1. Latar Belakang Masalah
Ilmu Pengetahuan Sosial (IPS) pada jenjang pendidikan dasar memfokuskan kajiannya kepada hubungan antar manusia dan proses membantu pengembangan kemampuan dalam hubungan tersebut. Pengetahuan, keterampilan dan sikap yang dikembangkan melalui kajian ini ditunjukan untuk mencapai keserasian dan keselarasan dalam kehidupan masyarakat.
Pendidikan IPS sudah lama dikembangkan dan dilaksanakan dalam kurikulum-kurikulum di Indonesia, khususnya pada jenjang pendidikan dasar. Pendidikan ini tidak dapat disangkal telah membawa beberapa hasil, walaupun belum optimal. Secara umum penguasaan pengetahuan sosial atau kewarganegaraan lulusan pendidikan dasar relatif cukup, tetapi penguasaan nilai dalam arti penerapan nilai, keterampilan sosial dan partisipasi sosial hasilnya belum menggembirakan. Kelemahan tersebut sudah tertentu terkait atau dilatarbelakangi oleh banyak hal, terutama proses pendidikan atau pembelajarannya, kurikulum, para pengelola dan pelaksananya serta faktor-faktor yang berpengaruh lainnya.
Beberapa temuan penelitian dan pengamatan ahli memperkuat kesimpulan tersebut. Dalam segi hasil atau dampak pendidikan Ilmu Pengetahuan Sosial atau IPS terhadap kehidupan bermasyarakat, masih belum begitu nampak. Perwujudan nilai-nilai sosial yang dikembangkan di sekolah belum nampak dalam kehidupan sehari-hari, keterampilan sosial para sosial para lulusan pendidikan dasar khususnya masih memprihatinkan, partisipasi dalam berbagai kegiatan kemasyarakatan semakin menyusut.
Banyak penyebab yang melatarbelakangi pendidikan IPS belum dapat memberikan hasil seperti yang diharapkan. Faktor penyebabnya dapat berpangkal dari kurikulum, rancangan, pelaksana, pelaksanaan ataupun faktor-faktor pendukung pembelajaran. Berkenaan dengan kurikulum dan rancangan pembelajaran IPS, beberapa penelitian memberi gambaran tentang kondisi tersebut. Hasil penelitian Balitbang, Depdikbud tahun 1999 menyebutkan bahwa “Kurikulum 1994 tidak disusun berdasarkan basic competencies melainkan pada materi, sehingga dalam kurikulumnya banyak memuat konsep-konsep teoritis” (Boediono, et al. 1999: 84). Hasil evaluasi kurikulum IPS SD tahun 1994 menggambarkan adanya kesenjangan kesiapan siswa dengan bobot materi sehingga materi yang disajikan, terlalu dianggap sulit bagi siswa, kesenjangan antara tuntutan materi dengan fasilitas pembelajaran dan buku sumber, kesulitan menejemen waktu serta keterbatasan kemampuan melakukan pembaharuan metode mengajar (Depdikbud, 1999).
Dalam implementasi materi Muchtar, SA. (1991) menemukan IPS lebih menekankan aspek pengetahuan, berpusat pada guru, mengarahkan bahan berupa informasi yang tidak mengembangkan berpikir nilai serta hanya membentuk budaya menghafal dan bukan berpikir kritis. Dalam pelaksanaan Soemantri, N. (1998) menilai pembelajaran IPS sangat menjemukan karena penyajiannya bersifat monoton dan ekspositoris sehingga siswa kurang antusias dan mengakibatkan pelajaran kurang menarik padahal menurut Sumaatmadja, N. (1996: 35) guru IPS wajib berusaha secara optimum merebut minat siswa karena minat merupakan modal utama untuk keberhasilan pembelajaran IPS.
Selanjutnya Como dan Snow (dalam Syafruddin, 2001: 3) menilai bahwa model pembelajaran IPS yang diimplementasikan saat ini masih bersifat konvensional sehingga siswa sulit memperoleh pelayanan secara optimal. Dengan pembelajaran seperti itu maka perbedaan individual siswa di kelas tidak dapat terakomodasi sehingga sulit tercapai tujuan-tujuan spesifik pembelajaran terutama bagi siswa berkemampuan rendah. Model pembelajaran saat ini juga lebih menekankan pada aspek kebutuhan formal dibanding kebutuhan real siswa sehingga proses pembelajaran terkesan sebagai pekerjaan administratif dan belum mengembangkan potensi anak secara optimal.
Berdasarkan hal-hal di atas nampak, bahwa pada satu sisi betapa pentingnya peranan pendidikan IPS dalam mengembangkan pengetahuan, nilai. Sikap, dan keterampilan sosial agar siswa menjadi warga masyarakat, bangsa dan negara Indonesia yang baik namun di pihak lain masih banyak masalah-masalah tersebut diperlukan penelitian berkaitan dengan pembelajaran IPS. Salah satu upaya yang memadai untuk itu adalah dengan melakukan model pembelajaran.
2. Rumusan Masalah
Adapun yang menjadi pokok permasalahan dari penulisan makalah ini adalah :
1) Apa itu pendidikan IPS?
2) Apa saja permasalahan pendidikan IPS di sekolah dasar?
3) Apa yang dimaksud dengan model pembelajaran?
4) Bagaimana mengembangkan model pembelajaran untuk mengatasi masalah pendidikan IPS di sekolah dasar?
3. Tujuan Penulisan
Adapun tujuan penulisan makalah ini adalah:
1) Untuk menjelaskan tentang pendidikan IPS.
2) Menggambarkan permasalahan pendidikan IPS di SD.
3) Untuk menjelaskan tentang model pembelajaran.
4) Mendeskripsikan pengembangan model pembelajaran untuk mengatasi masalah pendidikan IPS di SD.
4. Manfaat Penulisan
Dengan adanya penulisan makalah yang bertajuk tentang pengembangan model pembelajaran untuk mengatasi masalah pendidikan IPS di Sekolah Dasar maka seluruh pihak yang memiliki keterkaitan dengan masalah tersebut bisa memahami apa yang menjadi pokok permasalahan yang terjadi. Agar nantinya masalah tersebut tidak menjadi masalah yang menghambat maksud ataupun tujuan yang ingin dicapai. Selain itu dalam penulisan makalah ini apa yang menjadi solusi dalam pemecahan masalah bisa ditemukan dan pihak-pihak yang terkait dapat mengembangkan potensi diri dalam mengelolah teknik model pembelajaran yang baik dan efisien.
BAB II
PEMBAHASAN
1. Pendidikan IPS
IPS adalah suatu bahan kajian yang terpadu yang merupakan penyederhanaan, adaptasi, seleksi dan modifikasi yang diorganisasikan dari konsep-konsep dan keterampilan-keterampilan Sejarah, Geografi, Sosiologi, Antropologi, dan Ekonomi (Puskur, 2001: 9). Geografi, Sejarah dan Antropologi merupakan disiplin ilmu yang memiliki keterpaduan yang tinggi. Pembelajaran Geografi memberikan wawasan berkenaan dengan peristiwa-peristiwa dengan wilayah-wilayah, sedangkan Sejarah memberikan kebulatan wawasan berkenaan dengan peristiwa-peristiwa dari berbagai periode. Antropologi meliputi studi-studi komparatif yang berkenaan dengan nilai-nilai kepercayaan, struktur sosial, aktivita-aktivitas ekonomi, organisasi politik, ekspresi-ekpresi dan spritual, teknologi, dan benda-benda budaya dari budaya-budaya terpilih. Ilmu Ekonomi tergolong kedalam ilmu-ilmu tentang kebijakan pada aktivitas-aktivitas yang berkenaan dengan pembuatan keputusan. Sosiologi merupakan ilmu-ilmu tentang perilaku seperti konsep peran, kelompok, institusi, proses interaksi dan kontrol sosial.
Muriel Crosby menyatakan bahwa IPS diidentifikasi sebagai studi yang memperhatikan pada bagaimana orang membangun kehidupan yang lebih baik bagi dirinya dan anggota keluarganya, bagaimana orang memecahkan masalah-masalah, bagaimana orang hidup bersama, bagaimana orang mengubah dan diubah oleh lingkungannya (Leonard S. Kenworthi, 1981:7). IPS menggambarkan interaksi individu atau kelompok dalam masyarakat baik dalam lingkungan fisik dan lingkungan sosial. Interaksi antar individu dalam ruang lingkup lingkungan mulai dari yang terkecil misalkan keluarga, tetangga, rukun tetangga atau rukun warga, desa/kelurahan, kecamatan, kabupaten, provinsi, negara dan dunia.
Jadi, dapat disimpulkan bahwa Pendidikan IPS adalah disiplin ilmu-ilmu sosial ataupun integrasi dari berbagai cabang ilmu sosial seperti: sosiologi, sejarah, geografi, ekonomi, dan antropologi yang mempelajari masalah-masalah sosial.
Pendidikan IPS di SD telah mengintegrasikan bahan pelajaran tersebut dalam satu bidang studi. Materi pelajaran IPS merupakan penggunaan konsep-konsep dari ilmu sosial yang terintegrasi dalam tema-tema tertentu. Misalkan materi tentang pasar, maka harus ditampilkan kapan atau bagaimana proses berdirinya (sejarah), dimana pasar itu berdiri (Geografi), bagaimana hubungan antara orang-orang yang berada di pasar (Sosiologi), bagaimana kebiasaan-kebiasaan orang menjual atau membeli di pasar (Antropologi) dan berapa jenis-jenis barang yang diperjualbelikan (Ekonomi).
Dengan demikian Pendidikan IPS di sekolah dasar adalah disiplin ilmu-ilmu sosial seperti yang disajikan pada tingkat menengah dan universitas, hanya karena pertimbangan tingkat kecerdasan, kematangan jiwa peserta didik, maka bahan pendidikannya disederhanakan, diseleksi, diadaptasi dan dimodifikasi untuk tujuan institusional didaksmen (Sidiharjo, 1997).
2. Permasalahan Pendidikan IPS di SD
Tujuan utama Ilmu Pengetahuan Sosial ialah untuk mengembangkan potensi peserta didik agar peka terhadap masalah sosial yang terjadi di masyarakat, memiliki sikap mental positif terhadap perbaikan segala ketimpangan yang terjadi, dan terampil mengatasi setiap masalah yang terjadi sehari-hari baik yang menimpa dirinya sendiri maupun yang menimpa masyarakat. Tujuan tersebut dapat dicapai manakala program-program pelajaran IPS di sekolah diorganisasikan secara baik. Dari rumusan tujuan tersebut dapat dirinci sebagai berikut (Awan Mutakin, 1998).
1) Memiliki kesadaran dan kepedulian terhadap masyarakat atau lingkungannya, melalui pemahaman terhadap nilai-nilai sejarah dan kebudayaan mastarakat.
2) Mengetahui dan memahami konsep dasar dan mampu menggunakan metode yang diadaptasi dari ilmu-ilmu sosial yang kemudian dapat digunakan untuk memecahkan masalah-masalah sosial.
3) Mampu menggunakan model-model dan proses berpikir serta membuat keputusan untuk menyelesaikan isu dan masalah yang berkembang di masyarakat.
4) Menaruh perhatian terhadap isu-isu dan masalah-masalah sosial, serta mampu membuat analisis yang kritis, selanjutnya mampu mengambil tindakan yang tepat.
5) Mampu mengembangkan berbagai potensi sehingga mampu membangun diri sendiri agar survive yang kemudian bertanggung jawab membangun masyarakat.
Menurut Noman Sumantri bahwa tujuan Pendidikan IPS pada tingkat sekolah adalah:
1) Menekankan tumbuhnya nilai kewarganegaraan, moral, ideologi negara dan agama.
2) Menekankan pada isi dan metode berfikir ilmuwan.
3) Menekankan reflective inquiry.
PIPS menurut NCCS mempunyai tujuan informasi dan pengetahuan (knowledge and information), nilai dan tingkah laku (attitude and values), dan tujuan keterampilan (skill): sosial, bekerja dan belajar, kerja kelompok, dan keterampilan intelektual (Jarolimele, 1986: 5-8).
Secara umum, pencapaian tujuan Pendidikan IPS lulusan pendidikan SD belumlah optimal. Kelemahan tersebut dilatarbelakangi oleh banyak hal, terutama proses pendidikan dan pembelajarannya.
Dalam proses pendidikan IPS di SD, pembelajarannya kurang memperhatikan karakteristik anak usia sekolah dasar, yakni terkait dengan perkembangan psikologis siswa. Menurut Jean Piaget (1963), anak dalam kelompok usia SD (6-12 tahun) berada dalam perkembangan kemampuan intelektual/kognitifnya pada tingkatan konkrit operasional. Mereka memandang dunia dalam keseluruhan yang utuh dan menganggap tahun yang akan datang sebagai waktu yang masih jauh. Yang mereka pedulikan adalah sekarang (=konkrit) dan bukan masa depan yang belum bisa mereka pahami (=abstrak). Padahal bahan materi IPS penuh dengan pesan-pesan yang bersifat abstrak. Konsep-konsep seperti waktu, perubahan, kesinambungan (continuity) arah mata angin, lingkungan, ritual, akulturasi, kekuasaan, demokrasi, nilai, peranan, permintaan atau kelangkaan adalah konsep-konsep abstrak yang dalam program studi IPS harus dibelajarkan kepada siswa SD.
Jika hal ini dibiarkan terus, maka pembelajaran IPS dapat menjadi pelajaran yang membosankan bagi siswa. Dan baik secara langsung maupun tidak akan berdampak pada tujuan pendidikan IPS yang diharapkan. Untuk mengatasi permasalahan tersebut diperlukanlah model pembelajaran yang sesuai untuk materi IPS di SD dan memperhatikan karakteristik anak usia SD.
3. Model Pembelajaran
1) Pengertian Model Belajar-Mengajar
Dalam keseharian istilah ‘model’ dimaksudkan terhadap pola atau bentuk yang akan menjadi acuan. Dalam konteks pendidikan agaknya tidak jauh juga maknanya, yakni sebagai kerangka konseptual berkenaan dengan rancangan yang berisi langkah teknis dalam kesatuan strategis yang harus dilakukan dalam mendorong terjadinya situasi pendidikan; dalam wujud perilaku belajar dan mengajar dengan kecenderungan berbeda antara satu dengan lainnya atau dengan yang biasanya. Dengan demikian sebuah model dalam konteks pembelajaran, tidaklah dapat diterima sebagai sebuah model jika tidak memperliahatkan ciri khususnya sebagai sesuatu yang berbeda dari yang lainnya. Adapun menurut Sarifudin (Wahab, Azis, 1990: 1) yang dimaksud dengan ‘model belajar mengajar’ adalah “kerangka konseptual yang melukiskan prosedur yang terorganisasikan secara sistematik dalam mengorganisasikan pengalaman belajar untuk mencapai tujuan belajar tertentu, yang berfungsi sebagai pedoman bagi perancang pengajaran dan para guru dalam merencanakan dan melaksanakan aktivitas belajar mengajar”. Dengan demikian, model belajar-mengajar khususnya dapat diartikan sebagai satuan cara, yang berisi prosedur, langkah teknis yang harus dilakukan dalam mendekati sasaran proses dan hasil belajar hingga mencapai efektifitasnya, menurut kesesuaian dengan setting waktu, tempat dan subjek ajarnya.
2) Macam-macam Model Mengajar
a. Model-model Pemrosesan
Model-model yang berorientasi pada kemampuan pemrosesan informasi dari siswa dan cara memperbaiki kemampuannya dalam menguasai informasi, merujuk pada cara orang menangani stimulus dari lingkungannya, mengorganisasikan data, menginderai masalah, melahirkan konsep dan pemecahan masalah, dan menggunakan simbol verbal da non-verbal. Sungguhpun model-model yang termasuk ke dalam rumpun ini berkesan akademik namun tetap peduli akan hubungan sosial dan pengembangan diri. Model-model yang termasuk dalam rumpun ini antara lain adalah; Model Berpikir (Inquiry Training Model), Inkuiri Ilmiah (Scientific Inquiry), Perolehan Konsep (Concept), Model Advance Organizer (Advance Organizer Model), dan Ingatan (Memory). Model berpikir yang dikembangkan Hilda Taba, dirancang terutama untuk pengembangan proses mental induktif dan penalaran akademik atau pembentukan teori, namun kapasitasnya berguna pula untuk pengembangan personal dan sosial.
b. Model-model Personal
Model-model yang termasuk ke dalam rumpun personal berorientasi pada pengembangan diri individu, model-model ini menekankan proses pembentukan individu dalam mengorganosasikan realitasnya yang unik. Fokus pengembangan diri berkesan menekankan pada pembinaan emosional antara individu dalam hubungan produktif dengan lingkungannya hingga diharapkan menghasilkan hubungan interpersonal yang lebih kaya dan kemampuan pemrosesan yang lebih efektif lagi. Terliput ke dalam rumpun ini adalah; Pengajaran Non-Direktif (Non-directive Teaching), Pelatihan Kesadaran (Awraness Training), Sinektic (Synectics), Sistem Konseptual (Conceptual System) dan Pertemuan Kelas (Classroom Meeting).
c. Model-model Interaksi Sosial
Model-model pembelajaran yang termasuk rumpun Interaksi Sosial, menekankan hubungan antara individu dengan masyarakat dan dengan individu lainnya. Fokus model ini terletak pada proses di mana dengan proses ini realitas dinegosiasi memberikan prioritas pada perbaikan kemampuan individu untuk berhubungan dengan yang lainnya, bergelut dengan proses demokratik dan bekerja secara produktif dalam masyarakat. Termasuk ke dalam rumpun model ini, antara lain : Investigasi Kelompok (Group Investigation), Inkuiri Sosial (Social Inquiry), Metode Laboratorium (Laboratory Method), Yurisprudensial (Yurisprudential), Bermain Peran (Role Playing) dan Simulasi Sosial (Social Simulation).
d. Model Behavioral
Model-model yang termasuk ke dalam rumpun behavioral berpijak pada landasan teoritis yang sama, yakni teori tingkah laku (Behavioral Theory). Dalam penerapannya, model ini banyak menggunakan istilah lain seperti teori belajar, teori belajar sosial, modifikasi tingkah laku, dan terapi tingkah laku. Ciri pokoknya menekankanpada usaha mengubah tingkah laku teramati ketimbang struktur psikologis yang mendasarinya dan tingkah laku yang tidak teramatinya. Model ini mendasarkan pada prinsip kontrol stimulus dan penguatan (Stimulus Control and Reinforcement). Lebih dari model lainnya model behavioral memiliki keterpakaian yang luas dan teruji keefektifannya pada aneka tujuan seperti pendidikan, pelatihan, tingkah laku interpersonal da pengobatan. Tercakup kedalam model ini, antara lain: Manajemen Kontingensi (Contingency Management), Kontrol Diri (Self Control), Relaksasi (Relaxation), Reduksi Stres (Stress Reducation), Pelatihan Asertif (Assertive Training), Desentisasi (Desensitization) dan Pelatihan Langsung (Direct Training).
4. Pengembangan Model Pembelajaran Untuk Mengatasi Masalah Pendidikan IPS di SD
Sejumlah model pendekatan pembelajaran tersebut diatas, masing-masing mengedepankan keunggulan dalam mengupayakan pencapaian sasaran yang diyakini oleh setiap pengembangannya, namun untuk penerapan praktis di tempat yang sangat mungkin berbeda, harus dikalkulasikan dengan berbagai aspek kondisional yang tentu tidak sama. Sekurang-kurangnya dimana, oleh, atau dengan dan terutama untuk siapa proses pembelajaran dilakukan. Khusus berkaitan dengan kebutuhan pembelajaran pada anak usia pertumbuhan, dari sejumlah model tersebut tentunya dapat dirujuk model pendekatan yang menjadi rujukan di atas dengan sebutan model Cognitive Emotion and Social Development. Dasar pandangannya adalah “anak merupakan produk berbagai pengaruh, mulai dari keluarganya, kesehatan, kondisi sosial ekonomi dan sekolah”. Bahwa masing-masing pendekatan pada pandangan teoritis berkenaan dengan stressingnya, dalam praktisnya dapat terjadi saling berkait antara satu pendekatan dengan pendekatan lain secara bersamaan. Untuk itu, memenuhi keperluan teknis operasional dalam mengembangkan pembelajaran Pengetahuan Sosial berbasis pendekatan nilai khususnya, berikut dipetikan langkah teknis sejumlah model pilihan yang dipandang mewakili tuntutan karakteristik materil, peserta didik dan setting sosial yang menjadi lingkungan kultur dan belajar SD/MI umumnya di tanah air. Beberapa dari sejumlah pendekatan yang menjadi rujukan tersebut, secara parsial terliput dalam kerangka teknis model pilihan berikut, antara lain: Model Inkuiri, VCT, Bermain Peta, ITM (STS), Role Playing, dan Portofolio.
1) Model Inkuiri
a) Makna Pembelajaran Inkuiri
Model inkuiri adalah salah satu model pembelajaran yang memfokuskan kepada pengembangan kemampuan siswa dalam berpikir reflektif kritis, dan kreatif. Inkuiri adalah salah satu model pembelajaran yang dipandang modern yang dapat dipergunakan pada berbagai jenjang pendidikan, mulai tingkat pendidikan dasar hingga menengah. Pelaksanaan inkuiri di dalam pembelajaran Pengetahuan Sosial dirasionalisasi pada pandangan dasar bahwa dalam model pembelajaran tersebut, siswa didorong untuk mencari dan mendapatkan informasi melalui kegiatan belajar mandiri. Model inkuiri pada hakekatnya merupakan penerapan metode ilmiah khususnya di lapangan Sains, namun dapat dilakukan terhadap berbagai pemecahan problem sosial. Savage Amstrong mengemukakan bahwa model tersebut secara luas dapat digunakan dalam proses pembelajaran Social Studies (Savage and Amstrong, 1996). Pengembangan strategi pembelajaran dengan model inkuiri dipandang sanagt sesuai dengan karakteristik materil pendidikan Pengetahuan Sosial yang bertujuan mengembangkan tanggungjawab individu dan kemampuan berpartisipasi aktif baik sebagai anggota masyarakat dan warganegara.
b) Langkah-langkah Inkuiri
Langkah-langkah yang harus ditempuh di dalam model inkuiri pada hakekatnya tidak berbeda jauh dengan langkah-langkah pemecahan masalah yang dikembangkan oleh John Dewey dalam bukunya “How We Think”. Langkah-langkah tersebut antara lain:
· Langkah pertama, adalah orientation, siswa mengidentifikasi masalah, dengan pengarahan dari guru terutama yang berkaitan dengan situasi kehidupan sehari-hari.
· Langkah kedua hypothesis, yakni kegiatan menyusun sebuah hipotesis yang dirumuskan sejelas mungkin sebagai antiseden dan konsekuensi dari penjelasan yang telah diajukan.
· Langkah ketiga definition, yaitu mengklarifikasi hipotesis yang telah diajukan dalam forum diskusi kelas untuk mendapat tanggapan.
· Langkah keempat exploration, pada tahap ini hipotesis dipeluas kajiannya dalam pengertian implikasinya dengan asumsi yang dikembangkan dari hipotesis tersebut.
· Langkah kelima evidencing, fakta dan bukti dikumpulkan untuk mencari dukungan atau pengujian bagi hipotesa tersebut.
· Langkah keenam generalization, pada tahap ini kegiatan inkuiri sudah sampai pada tahap mengambil kesimpulan pemecahan masalah (Joyce dan Weil, 1980).
2) Model Pembelajaran VCT
a) Makna Pembelajaran VCT
VCT adalah salah satu teknik pembelajaran yang dapat memenuhi tujuan pancapaian pendidikan nilai. Djahiri (1979: 115) mengemukakan bahwa Value Clarification Technique, merupakan sebuah cara bagaimana menanamkan dan menggali/ mengungkapkan nilai-nilai tertentu dari diri peserta didik. Karena itu, pada prosesnya VCT berfungsi untuk: a) mengukur atau mengetahui tingkat kesadaran siswa tentang suatu nilai; b) membina kesadaran siswa tentang nilai-nilai yang dimilikinya baik yang positif maupun yang negatif untuk kemudian dibina kearah peningkatan atau pembetulannya; c) menanamkan suatu nilai kepada siswa melalui cara yang rasional dan diterima siswa sebagai milik pribadinya. Dengan kata lain, Djahiri (1979: 116) menyimpulkan bahwa VCT dimaksudkan untuk “melatih dan membina siswa tentang bagaimana cara menilai, mengambil keputusan terhadap suatu nilai umum untuk kemudian dilaksanakannya sebagai warga masyarakat”.
b) Langkah Pembelajaran Model VCT
Berkenaan dengan teknik pembelajaran nilai Jarolimek merekomendasikan beberapa cara, antara lain:
a. Teknik evaluasi diri (self evaluation) dan evaluasi kelompok (group evaluation)
Dalam teknik evaluasi diri dan evaluasi kelompok pesertadidik diajak berdiskusi atau tanya-jawab tentang apa yang dilakukannya serta diarakan kepada keinginan untuk perbaikan dan penyempurnaan oleh dirinya sendiri:
1) Menentukan tema, dari persoalan yang ada atau yang ditemukan peserta didik
2) Guru bertanya berkenaan yang dialami peserta didik
3) Peserta didik merespon pernyataan guru
4) Tanya jawab guru dengan peserta didik berlangsung terus hingga sampai pada tujuan yang diharapkan untuk menanamkan niai-nilai yang terkandung dalam materi tersebut.
b. Teknik Lecturing
Teknik lecturing, dilalukan guru gengan bercerita dan mengangkat apa yang menjadi topik bahasannya. Langkah-langkahnya antara lain:
1) Memilih satu masalah / kasus / kejadian yang diambil dari buku atau yang dibuat guru.
2) Siswa dipersilahkan memberikan tanda-tanda penilaiannya dengan menggunakan kode, misalnya: baik-buruk, salah benar, adil tidak adil, dsb.
3) Hasil kerja kemudian dibahas bersama-sama atau kelompok kalau dibagi kelompok untuk memberikan kesempatan alasan dan argumentasi terhadap penilaian tersebut.
c. Teknik menarik dan memberikan percontohan
Dalam teknik menarik dan memberi percontohan (example of axamplary behavior), guru membarikan dan meminta contoh-contoh baik dari diri peserta didik ataupun kehidupan masyarakat luas, kemudian dianalisis, dinilai dan didiskusikan.
d. Teknik indoktrinasi dan pembakuan kebiasan
Teknik indoktrinasi dan pembakuan kebiasan, dalam teknik ini peserta didik dituntut untuk menerima atau melakukan sesuatu yang oleh guru dinyatakan baik, harus, dilarang, dan sebagainya.
e. Teknik tanya-jawab
Teknik tanya-jawab guru mengangkat suatu masalah, lalu mengemukakan pertanyaan-pertanyaan sedangkan peserta didik aktif menjawab atau mengemukakan pendapat pikirannya.
f. Teknik menilai suatu bahan tulisan
Teknik menila suatu bahan tulisan, baik dari buku atau khusus dibuat guru. Dalam hal ini peserta didik diminta memberikan tanda-tanda penilaiannya dengan kode (misal: baik - buruk, benar – tidak-benar, adil – tidak-adil dll). Cara ini dapat dibalik, siswa membuat tulisan sedangkan guru membuat catatan kode penilaiannya. Selanjutnya hasil kerja itu dibahas bersama atau kelompok untuk memberikan tanggapan terhadap penilaian.
g. Teknik mengungkapkan nilai melalui permainan (games). Dalam pilihan ini guru dapat menggunakan model yang sudah ada maupun ciptaan sendiri.
3) Model Bermain Peta
Keterampilan menggunakan dan menafsirkan peta dan globe merupakan salah satu tujuan penting dalam pembelajaran Pengetahuan Sosial. Keterampilan menginterpretasi peta maupun globe perlu dilakukan peserta didik secara fungsional. Peta dan globe memberikan manfaat, yaitu: a) siswa dapat memperoleh gambaran mengenai bentuk, besar, batas-batas suatu daerah; b) memperoleh pengertian yang lebih jelas mengenai istilah-istilah geografi seperti: pulau, selat, semnanjung, samudera, benua dan sebagainya; c) memahami peta dan globe, diperlukan beberapa syarat yaitu : (a) arah, siswa mengerti tentang cara menentukan tempat di bumi seperti arah mata angin, meridian, paralel, belahan timur dan barat; (b) skala, merupakan model atau gambar yang lebih kecil dari keadaan yang sebenarnya; (c) lambang-lambang, merupakan simbo-simbol yang mudah dibaca tanpa ada keterangan lain; (d) warna, menggunakan berbagai warna untuk menyatakan hal-hal tertentu misalnya: laut, beda tinggi daratan, daerah, negara tertentu dsb.
4) Pendekatan ITM (Ilmu-Teknologi dan Masyarakat)
a) Kebermaknaan Model Pendekatan ITM
Pendekatan ITM (Ilmu, Teknologi, dan Masyarakat) atau juga disebut STS (Science-Technology-Society) muncul menjadi sebuah pilihan jawaban atas kritik terhadap pengajaran Ilmu Pengetahuan Sosial yang bersifat tradisional (texbook), yakni berkisar masih pada pengajaran tentang fakta-fakta dan teori-teori tanpa menghubungkannya dengan dunia nyata yang integral. ITM dikembangkan kemudian sebagai sebuah pendekatan guna mencapai tujuan pembelajaran yang berkaitan langsung dengan lingkungan nyata dengan cara melibatkan peran aktif peserta didik dalam mencari informasi untuk meemcahkan masalah yang ditemukan dalam kehidupan kesehariannya. Pendekatan ITM menekankan pad aktivitas peserta didik melalui penggunaan keterampilanproses dan mendorong berpikir tingkat tinggi, seperti; melakukan kegiatan pengumpulan data, menganalisis data, melakukan survey observasi, wawancara dengan masyarakat bahkan kegiatan di laboratorium dsb. Oleh karena itu, permasalahan tentang kemasyarakatan sebagaimana adanya tidak terlepas dari perkembangan ilmu dan teknologi, dapat dijawab melalui inkuiri. Dalam kegiatan pembelajaran tersebut peserta didik menjadi lebih aktif dalam menggali permasalahan berdasarkan pada pengalaman sendiri hingga mampu melahirkan kerangka pemecahan masalah dan tindakan yang dapat dilakukan secara nyata. Karena itu, pendekatan ITM dipandang dapat memberi kontribusi langsung terhadap misi pokok pembelajaran pengetahuan sosial, khusus dalam mempersiapkan warga negara agar memiliki kemampuan: a) memahami ilmu pengetahuan di masyarakat, b) mengambil keputusan sebagai warga negara, c) membuat hubungan antar pengetahuan, dan d) mengingat sejarah perjuangan dan peradaban luhur bangsanya.
b) Langkah Pendekatan ITM
Beberapa hal yang perlu diperhatikan dalam melaksanakan pembelajaran pendekatan ITM antara lain:
1. Menekankan pada paham kontruktivisme, bahwa setiap individu peserta didik, telah memiliki sejumlah pengetahuan dari pengalamannya sendiri dalam kehidupan faktual di lingkungan keluarga dan masyarakat.
2. Peserta didik dituntut untuk belajar dalam memecahkan permasalahan dan dapat menggunakan sumber-sumber setempat (nara sumber dan bahan-bahan lainnya) untuk memperoleh informasi yang dapat digunakan dalam pemecahan masalah.
3. Pola pembelajaran bersifat kooperatif (kerja sama) dalam setiap kegiatan pembelajaran serta menekankan pada keterampilan proses dalam rangka melatih peserta didik berfikir tingkat tinggi.
4. Peserta didik menggali konsep-konsep melalui proses pembelajaran yang ditempuh dengan cara pengamatan (observasi) terhadap objek-objek yang dipelajarinya.
5. Masalah-masalah aktual sebagai objek kajian, dibahas bersama guru dan peserta didik guna menghindari terjadi kesalahan konsep.
6. Pemilihan tema-tema didasarakan urutan integratif.
7. Tema pengorganisasian pokok dari sejumlah unit ITM adalah isu dan masalah sosial yang berkaitan dengan ilmu pengetahuan.
c) Tahapan Metode Pendekatan ITM
(1) Tahap Eksplorasi
Kegiatan eksplorasi merupakan tahap pengumpulan data lapangan dan data yang berkaitan dengan nilai. Peserta didik dengan bantuan LKS secara berkelompok melakukan pengamatan langsung. Eksplorasi dilakukan guna membuktikan konsep awal yang mereka miliki dengan konsep ilmiah.
(2) Tahap Penjelasan dan Solusi
Dari data yang telah terkumpul berdasarkan hasil pengamatan, diharapkan peserta didik mampu memberikan solusi sebagai alternatif jawaban tentang persoalan lingkungan. Peserta didik didorong untuk menyampaikan gagasan, menyimpulkan, memberikan argumen dengan tepat, membuat model, membuat poster yang berkenaan dengan pesan lingkungan, membuat puisi, menggambar, membuat karangan, serta membuat karya seni lainnya.
(3) Tahap Pengambilan Tindakan
Peserta didik dapat membuat keputusan atau mempertimbangkan alternatif tindakan dan akibat-akibatnya dengan menggunakan pengetahuan dan keterampilan yang telah diperolehnya. Berdasar pengenalan masalah dan pengembangan gagasan pemecahannya, mereka dapat bermain peran (Role Playing) membuat kebijakan strategis yang diperlukan untuk mempengaruhi publik dalam mengatasi permasalahan lingkungan tersebut.
(4) Diskusi dan Penjelasan
Berikutnya guru dan peserta didik melakukan diskusi kelas dan penjelasan konsep melalui tahapan sebagai berikut:
· Masing-masing kelompok melaporkan hasil temuan pengamatan lingkungannya.
· Guru memberikan kesempatan kepada anggota kelas lainnya untuk memberikan tanggapan atau informasi yang relevan terhadap laporan kelompok temannya.
· Guru bersama peserta didik menyimpulkan konsep baru yang diperoleh kemudian mereka diminta melihat kembali jawaban yang telah disampaikan sebelum kegiatan eksplorasi.
· Guru membimbing peserta didik merkonstruksi kembali pengetahuan langsung dari objek yang dipelajari tentang alam lingkungannya.
(5) Tahap Pengembangan dan Aplikasi Konsep
· Guru bertanya pada peserta didik tentang hal-hal yang diliahat dalam kehidupan sehari-hari yang merupakan aplikasi konsep baru yang telah ditemukan.
· Guru dan peserta didik mendiskusikan sikap dan kepedulian yang dapat mereka tumbuhkan dalam kehidupan sehari-hari berkaitan dengan konsep baru yang telah ditemukan.
(6) Tahap Evaluasi
Pada tahapan evaluasi, guru memperlihatkan gambar suasana lingkungan yang berbeda yaitu lingkungan yang terpelihara dan yang tidak terpelihara. Kemudian menggunakan pertanyaan pancingan pada peserta didik sehingga mampu memberikan penilaian sendiri tentang keadaan kedua lingkungan tersebut.
(7) Kegiatan Penutup
Kegiatan penutup merupakan kegiatan penyimpulan yang dilakukan guru dan peserta didik dari seluruh rangkaian pembelajaran. Sebagai bagian penutup, guru menyampaikan pesan moral.
5) Model Role Playing
a) Kebermaknaan Penggunaan Model Role Playing
Role Playing adalah salah satu model pembelajaran yang perlu menjadi pengalaman belajar peserta didik, terutama dalam konteks pembelajaran Pengetahuan Sosial dan Kewarganegaraan didalamnya. Sebagai langkah teknis, role playing sendiri tidak jarang menjadi pelengkap kegiatan pembelajaran yang dikembangkan dengan stressing model pendekatan lainnya, seperti inkuiri, ITM, Portofolio, dan lainnya. Secara komprehensif makna penggunaan role playing dikemukakan George Shaftel (Djahiri, 1978: 109) antara lain:
1) untuk menghayati sesuatu/hal/kejadian sebenarnya dalam realitas kehidupan; 2) agar memahami apa yang menjadi sebab dari sesuatu serta bagaimana akibatnya; 3) untuk mempertajam indera dan perasaan siswa terhadap sesuatu; 4) sebagai penyaluran/pelepasan tensi (kelebihan energi psykhis) dan perasaan-perasaan; 5) sebagai alat diagnosa keadaan; 6) ke arah pembentukan konsep secara mandiri; 7) menggali peran-peran dari pada dalam suatu kehidupan/kejadian/keadaan; 8) menggali dan meneliti nilai-nilai (norma) dan peranan budaya dalam kehidupan; 9) membantu siswa dalam mengklarifikasikan (memperinci) pola berpikir, berbuat dan keterampilannya dalam membuat/ mengambil keputusan menurut caranya sendiri; 10) membina siswa dalam kemampuan memecahakan masalah.
b) Langkah-langkah Role Playing
Adapun langkah-langkahnya, Djahiri (1978: 109) mengangkat urutan teknis yang dikembangkan Shaftel yang terdiri dari 9 langkah dalam tabel berikut.
No.
Urutan Langkah
Kegiatan dan Pelakunya
1.
Penjelasan umum
1.1. Mencari atau mengemukakan permasalahan (oleh guru atau bersama siswa).
1.2. Memperjelas masalah/ topik tersebut (guru).
1.3. Mencari bahan-bahan, keterangan atau penjelasan lebih lanjut, dengan menunjukan sumbernya (guru & siswa).
1.4. Menjelaskan tujuan, makna dari role playing.
2.
Memilih para pelaku
2.1. Menganalisis peran yang harus dimainkan (guru bersama siswa).
2.2. Memilih para pelakunya (dibantu guru).
3.
Menentukan Observer
3.1. Menentukan observer dan menjelaskan tugas dan peranannya (guru & siswa).
4.
Menentukan jalan cerita
4.1. gariskan jalan ceritanya.
4.2. tegaskan peran-peran yang ada didalamnya.
4.3. berikut gambaran situasi keadaan cerita tersebut (guru + siswa).
5.
Pelaksanaan (bermain)
5.1. Mulai melakonkan permainan tersebut
5.2. Menjaga agar setiap peran berjalan.
5.3. Jagalah agar babakan-babakan terlihat jelas.
No.
Urutan Langkah
Kegiatan dan Pelakunya
6.
Diskusi dan permainan
6.1. Telaah setiap peran, posisi, dan permainan.
6.2. diskusikan hal tersebut berikut saran perbaikannya.
6.3. Siapkan permainan ulangan.
7.
Permainan ulang dan diskusi serta penelaahan
7.1. Seperti sub 5 dan sub 6
8.
Mempertukarkan pikiran, pengalaman dan membuat kesimpulan
8.1. Setiap pelaku mengemukakan pengalaman, perasaan dan pendapatnya.
8.2. Observer mengemukakan penilaian pendapatnya.
8.3. Siswa dan guru membuat kesimpulan dan merangkainya dengan topik / konsep yang sedang dipelajarinya.
6) Model Portofolio
a) Makna Pembelajaran Portofolio
Protofolio dalam pendidikan mulai dipergunakan sebagai salah satu jenis model penilaian (Assesment) yang berbasis produk, yakni penilaian yang didasarkan pada segala hasil yang dapat dibuat atau ditunjukan peserta didik, kemudian dihimpun dalam sebuah ‘map jepit’ (portofolio) untuk dijadikan bahan pertimbangan guru dalam memberikan asesmen otentik terhadap kinerja peserta didik.
Sapriya (Winataputra, 2002: 1.16) menegaskan bahwa: “portofolio merupakan karya terpilih kelas/siswa secara keseluruhan yang bekerja secara kooperatif membuat kebijakan publik untuk membahas pemecahan terhadap suatu masalah kemasyarakatan”. Makna pembelajaran berbasis portofolio dalam pembelajaran Pengetahuan Sosial adalah memperkenalkan kepada peserta didik dan membelajarkan mereka “pada metode dan langkah-langkah yang digunakan dalam proses politik” kewarganegaraan/kemasyarakatan.
b) Langkah-langkah Penbelajaran Portofolio
Secara teknis pendekatan portofolio dimulai dengan membagi peserta didik dalam kelas ke dalam beberapa kelompok, lajimnya dilakukan menjadi 4 atau sesuai menurut keadaan dan keperluannya. Berdasarkan urutannya, setiap kelompok membidangi tugas dan tanggungjawab masing-masing, antara lain:
(1) Kelompok portofolio-satu; Menjelaskan masalah, dalam tugasnya kelompokini bertanggung jawab untuk menjelaskan masalah yang telah mereka pilih untuk dikaji dalam kelas.
(2) Kelompok portofolio-dua; Menilai kebijakan alternatif yang diusulkan untuk memecahkan masalah, dalam tugasnya kelompok ini bertanggung jawab untuk menjelaskan kebijakan saat ini dan atau kebijakan yang dirancang untuk memecahkan masalah.
(3) Kelompok portofolio-tiga; Membuat satu kebijakan publik yang didukung oleh kelas, dalam tugasnya kelompok ini bertanggung jawab untuk membuat satu kebijakan publik tertentu yang disepakati untuk didukung oleh mayoritas kelas serta memberikan pembenaran terhadap kebijakan tersebut.
(4) Kelompok portofolio-empat; Membuat satu rencana tindakan agar pemerintah (setempat) dalam masyarakat mau menerima kebijakan kelas. Dalam tugasnya kelompok ini bertanggung jawab untuk membuat suatu rencana tindakan yang menujukkan bagaimana warganegara dapat mempengaruhi pemerintah (setempat) untuk menerima kebijakan yang didukung oleh kelas.
BAB III
PENUTUP
1. Kesimpulan
Pendidikan IPS adalah disiplin ilmu-ilmu sosial ataupun integrasi dari berbagai cabang ilmu sosial seperti: sosiologi, sejarah, geografi, ekonomi, dan antropologi yang mempelajari masalah-masalah sosial.
Dalam proses pendidikan IPS di SD, pembelajarannya kurang memperhatikan karakteristik anak usia sekolah dasar, yakni terkait dengan perkembangan psikologis siswa. Anak dalam kelompok usia SD (6-12 tahun) berada dalam perkembangan kemampuan intelektual/kognitifnya pada tingkatan konkrit operasional. Padahal bahan materi IPS penuh dengan pesan-pesan yang bersifat abstrak. Konsep-konsep seperti waktu, perubahan, lingkungan, ritual, akulturasi, demokrasi, nilai, peranan merupakan konsep-konsep abstrak yang dalam program studi IPS harus dibelajarkan kepada siswa SD.
Jika hal ini dibiarkan terus, maka pembelajaran IPS dapat menjadi pelajaran yang membosankan bagi siswa. Untuk mengatasi permasalahan tersebut diperlukanlah model pembelajaran yang sesuai untuk materi IPS di SD dan memperhatikan karakteristik anak usia SD.
Adapun model pembelajaran yang dapat digunakan untuk mengatasi masalah pendidikan IPS di SD adalah :
a. Model Inkuiri
b. Model Pembelajaran VCT
c. Model Bermain Peta
d. Pendekatan ITM (Ilmu-Teknologi dan Masyarakat)
e. Model Role Playing
f. Model Portofolio
2. Saran
Dalam mengembangkan potensi peserta didik agar peka terhadap masalah sosial yang terjadi di masyarakat, kita harus memiliki sikap mental positif terhadap perbaikan segala ketimpangan yang terjadi, dan terampil mengatasi setiap masalah yang terjadi sehari-hari baik yang menimpa dirinya sendiri maupun yang menimpa masyarakat. Untuk mencapai tujuan tersebut, program-program pelajaran IPS di sekolah haruslah diorganisasikan secara baik.
Sejumlah model pendekatan pembelajaran yang telah dijelaskan diatas, masing-masing mengedepankan keunggulan dalam mengupayakan pencapaian sasaran yang diyakini oleh setiap pengembangannya, namun untuk penerapan praktis di tempat yang sangat mungkin berbeda. Oleh karena itu harus dikalkulasikan dengan berbagai aspek kondisional yang tentu tidak sama.
DAFTAR PUSTAKA
Al-Lamri Ichas Hamid dan Tuti Istianti Ichas. 2006. Pengembangan Pendidikan Nilai dalam Pembelajaran Pengetahuan Sosial di Sekolah Dasar. Jakarta : Departemen Pendidikan Nasional
Kamis, 02 Desember 2010
Minggu, 07 November 2010
PACAR YANG HILANG - BIRU BAND
aKU hANYA iNGIN mENCINTAIMU
dENGAN sEPENUH jIWA dan Ragaku
tAPI mENGAPA kAU tINGGALKANKU
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
OOOO OOOO
aNDAI kAU tAHU sAKIT hATI iNI kUTAK sANGGUP lAGI *cahdonorejo
kUTAK tAHAN lAGI
mENGAPA hIDUPKU sELALU bEGINI
tERUS tERSAKITI dAN dI tINGGAL pERGI
lEBIH bAIK aKU hIDUP sENDIRI
kEMANAPUN tIADA yANG mELARANG
mENCARI pACAR pENGERTIAN
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
OOO OOO
aNDAI kAU tAHU sAKIT hATI iNI kUTAK sANGGUP lAGI *cahdonorejo
kUTAK tAHAN lAGI
mENGAPA hIDUPKU sELALU bEGINI
tERUS tERSAKITI dAN dI tINGGAL pERGI
uNTUK aPA aKU mIKIRIN kAMU
bELUM tENTU kAMU mIKIRIN aKU
lEBIH bAIKKU tINGGALKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
dENGAN sEPENUH jIWA dan Ragaku
tAPI mENGAPA kAU tINGGALKANKU
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
OOOO OOOO
aNDAI kAU tAHU sAKIT hATI iNI kUTAK sANGGUP lAGI *cahdonorejo
kUTAK tAHAN lAGI
mENGAPA hIDUPKU sELALU bEGINI
tERUS tERSAKITI dAN dI tINGGAL pERGI
lEBIH bAIK aKU hIDUP sENDIRI
kEMANAPUN tIADA yANG mELARANG
mENCARI pACAR pENGERTIAN
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
pACARKU hILANG dIAMBIL oRANG
aPAKAH wAJAKU kURANG tAMPAN sAYANG
mEMANG sUSAH mENCARI pACAR pERHATIAN pACAR pENGERTIAN
OOO OOO
aNDAI kAU tAHU sAKIT hATI iNI kUTAK sANGGUP lAGI *cahdonorejo
kUTAK tAHAN lAGI
mENGAPA hIDUPKU sELALU bEGINI
tERUS tERSAKITI dAN dI tINGGAL pERGI
uNTUK aPA aKU mIKIRIN kAMU
bELUM tENTU kAMU mIKIRIN aKU
lEBIH bAIKKU tINGGALKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
pERGI lUPAKANMU
Senin, 24 Mei 2010
PSIKOLOGI PENDIDIKAN
Faktor faktor yang mempengaruhi proses belajar:
Secara umum factor-faktor yag mempengaruhi proses hasil belajar dibedakan atas dua kategori, yaitu factor internal dan factor eksternal . kedua factor tersebut saling memengaruhi dalam proses individu sehingga menentukan kualitas hasil belajar.
A. Faktor Internal
Factor internal adalah factor-faktor yang berasal dari dalam diri individu dan dapat memengaruhi hasil belajar individu. Factor-faktor internal ini meliputi factor fisiologis dan factor psikologiss.
1. Factor fisiologis
Factor-faktor fisiologis adalah factor-factor yang berhubungan dengan kondisi fisik individu. Factor-factor ini dibedakan menjadi dua macam.
Pertama, keadaan tonus jasmani. Keadaan tonus jasmani pada umumnya sangat memengaruhi aktivitas belajar seseorang . kondisi fisik yang sehat dan bugar akan memberikan pengaruh positif terhadap kegiatan belajar individu. Sebaliknya, kondisi fisik yang lemah atau sakit akan menghambat tercapainya hasil belajar yang maksimal. Oleh karena itu keadaan tonus jasmani sangat memengaruhi proses belajar , maka perlu ada usaha untuk menjaga kesehatan jasmani.
Cara untuk menjaga kesehatan jasmani antara lain adalah :
a. menjaga pola makan yang sehat dengan memerhatikan nutrisi yang masuk kedalam tubuh, karena kekurangan gizi atau nutrisi akan mengakibatkan tubuh cepat lelah, lesu , dan mengantuk, sehingga tidak ada gairah untuk belajar,
b. rajin berolah raga agar tubuh selalu bugar dan sehat;
c. istirahat yang cukup dan sehat.
Kedua, keadaan fungsi jasmani/fisiologis. Selama proses belajar berlangsung, peran fungsi fisiologis pada tubuh manusia sangat memengaruhi hasil belajar, terutama panca indra. Panca indra yang berfunsi dengan baik akan mempermudah aktivitas belajar dengan baik pula . dalam proses belajar , merupakan pintu masuk bagi segala informasi yang diterima dan ditangkap oleh manusia. Sehinga manusia dapat menangkap dunia luar. Panca indra yang memiliki peran besar dalam aktivitas belajar adalah mata dan telinga. Oleh lkarena itu, baik guru maupun siswwa perlu menjaga panca indra dengan baik, baik secara preventif maupun secara yang bersifat kuratif. Dengan menyediakan sarana belajar yang memenuhi persyaratan, memeriksakan kesehatan fungsi mata dan telinga secara periodic, mengonsumsi makanan yang bergizi , dan lain sebagainya.
2. Factor psikologis
Factor –faktor psikologis adalah keadaan psikologis seseorang yang dapat memengaruhi proses belajar. Beberapa factor psikologis yang utama memngaruhi proses belajar adalah kecerdasan siswa, motifasi , minat, sikap dan bakat.
– Kecerdasan / Intelegensia Siswa
Pada umumnya kecerdasan diartikan sebagai kemempuan psiko-fisik dalam mereaksikan rangsaganan atau menyesuaikan diri dengan lingkungan melalui cara yang tepat. Dengan demikian, kecerdasan bukan hanya berkaitan dengan kualitas otak saja, tetapi juga organ-organ tubuh lainnya. Namun bila dikaitkan dengan kecerdasan, tentunya otak merupakan organ yang penting dibandingkan organ yang lain, karena fungsi otak itu sebagai organ pengendali tertinggi (executive control) dari hamper seluruh aktivitas manusia.
Kecerdasan merupakan factor psikologis yang paling penting dalam proses belajar siswa, karena itu menentukan kualitas belajar siswa. Semakin tinggi iteligensi seorang individu, semakin besar peluang individu tersebut meraih sukses dalam belajar. Sebaliknya, semakin rendah tingkat intelegensi individu, semakin sulit individu itu mencapai kesuksesan belajar. Oleh karena itu, perlu bimbingan belajar dari orang lain, seperti guru, orang tua, dan lain sebagainya. Sebagai factor psikologis yang penting dalam mencapai kesuksesan belajar, maka pengetahuan dan pemahaman tentang kecerdasan perlu dimiliki oleh setiap calon guru professional, sehingga mereka dapat memahami tingakat kecerdasannya.
Para ahli membagi tingkatan IQ bermacam-macam, salah satunya adalah penggolongan tingkat IQ berdasarkan tes Stanford-Biner yang telah direvisi oleh Terman dan Merill sebagai berikut ((Fudyartanto 2002).
Distribusi Kecerdasan IQ menurut Stanford Revision
Tingkat kecerdasan (IQ) Klasifikasi
140 – 169 Amat superior
120 – 139 Superior
110 – 119 Rata-rata tinggi
90 – 109 Rata-rata
80 – 89 Rata-rata rendah
70 – 79 Batas lemah mental
20 — 69 Lemah mental
Dari table tersebut, dapat diketahui ada 7 penggolongan tingkat kecerdasan manusia, yaitu:
A. Kelompok kecerdasan amat superior (very superior) merentang antara IQ 140—IQ 169;
B. Kelompok kecerdasan superior merenytang anatara IQ 120—IQ 139;
C. Kelompok rata-rata tinggi (high average) menrentang anatara IQ 110—IQ 119;
D. Kelompok rata-rata (average) merentang antara IQ 90—IQ 109;
E. Kelompok rata-rata rendah (low average) merentang antara IQ 80—IQ 89;
F. Kelompok batas lemah mental (borderline defective) berada pada IQ 70—IQ 79;
G. Kelompok kecerdasan lemah mental (mentally defective) berada pada IQ 20—IQ 69, yang termasuk dalam kecerdasan tingkat ini antara lain debil, imbisil, idiot.
Pemahaman tentang tingkat kecerdasan individu dapat diperoleh oleh orang tua dan guru atau pihak-pihak yang berkepentingan melalui konsultasi dengan psikolog atau psikiater. Sehingga dapat diketahui anak didik berada pada tingkat kecerdasan yang mana, amat superior, superior, rata-rata, atau mungkin malah lemah mental. Informasi tentang taraf kecerdasan seseorang merupakan hal yang sangat berharga untuk memprediksi kamampuan belajar seseorang. Pemahaman terhadap tingkat kecerdasan peserta didik akan membantu megarahkan dan merencanakan bantuan yang akan diberikan kepada siswa.
- Motivasi
Motivasi adalah salah satu factor yang memengaruhi keefektifan kegiatan belajar siswa. Motivasilah yang mendorong siswa ingin melakukan kegiatan belajar. Para ahli psikologi mendefinisikan motivasi sebagai proses di dalam diri individu yang aktif, mendorong, memberikan arah, dan menjaga perilaku setiap saat (Slavin, 1994). Motivasi juga diartikan sebagai pengaruh kebutuhan-kebutuhan dan keinginan terhadap intensitas dan arah perilaku seseorang.
Dari sudut sumbernya motivasi dibagi menjadi dua, yaitu motivasi intrinsic dan motivasi ekstrinsik. Motaivasi intrinsic adalah semua factor yang berasal dari dalam diri individu dan memberikan dorongan untuk melakukan sesuatu. Seperti seorang siswa yang gemar membaca, maka ia tidak perlu disuruh-suruh untuk membaca, karena membaca tidak hanya menjadi aktifitas kesenangannya, tapi bisa jadi juga telah mejadi kebutuhannya. Dalam proses belajar, motivasi intrinsic memiliki pengaruh yang efektif, karena motivasi intrinsic relaatif lebih lama dan tidak tergantung pada motivasi dari luar(ekstrinsik).
Menurut Arden N. Frandsen (Hayinah, 1992), yang termasuk dalam motivasi intrinsic untuk belajar anatara lain adalah:
a. Dorongan ingin tahu dan ingin menyelisiki dunia yang lebih luas;
b. Adanya sifat positif dan kreatif yang ada pada manusia dan keinginan untuk maju;
c. Adanaya keinginan untuk mencapai prestasi sehingga mendapat dukungan dari orang-orang penting, misalkan orang tua, saudara, guru, atau teman-teman, dan lain sebaginya.
d. Adanya kebutuhan untuk menguasai ilmu atau pengetahuan yang berguna bagi dirinya, dan lain-lain.
Motivasi ekstrinsik adalah factor yang dating dari luar diri individu tetapi memberi pengaruh terhadap kemauan untauk belajar. Seperti pujian, peraturan, tata tertib, teladan guru, orangtua, danlain sebagainya. Kurangnya respons dari lingkungansecara positif akan memengaruhi semangat belajar seseorang menjadi lemah.
- Minat
Secara sederhana,minat (interest) berarti kecemnderungan dan kegairahan yang tinggi atau keinginan yang besar terhadap sesuatu. Menurut Reber (Syah, 2003) minat bukanlah istilah yang popular dalam psikologi disebabkan ketergantungannya terhadap berbagai factor internal lainnya, seperti pemusatan perhatian, keingintahuan, moativasi, dan kebutuhan.
Namun lepas dari kepopulerannya, minat sama halnya dengan kecerdasan dan motivasi, karena memberi pengaruh terhadap aktivitas belajar, ia akan tidak bersemangat atau bahkan tidak mau belajar. Oleh karena itu, dalam konteks belajar di kelas, seorang guru atau pendidik lainnya perlu membangkitkan minat siswa agar tertarik terhadap materi pelajaran yang akan dihadapainya atau dipelajaranya.
Untuk membagkitkan minat belajar tersebut, banyak cara yang bisa digunakan. Anatara lain:
Pertama, dengan mebuat materi yang akan dipelajarai semenarik mungkin dan tidak membosankan, baik dari bentuk buku materi, desai pembelajaran yang membebaskan siswa mengeksplor apa yang dipelajari, melibatkan seluruh domain belajar siswa (kognitif, afektif, psikomotorik) sehingga siswa menjadi aktif, maupun performansi guru yang menarik saat mengajar.
Kedua, pemilihan jurusan atau bidang studi. Dalam hal ini, alangkah baiknya jika jurusan atau bidang studi dipilih sendiri oleh siswa sesuai dengan minatnya.
- Sikap
Dalam proses belajar, sikap individu dapat memengaruhi keberhasilan proses belajarnya. Sikap adalah gejala internal yang mendimensi afektif berupa kecenderungan untuk mereaksi atau merespons dangan cara yang relative tetap terhadap obyek, orang, peristiwa dan sebaginya, baik secara positif maupun negative (Syah, 2003).
Sikap siswa dalam belajar dapat dipengaruhi oleh perasaan senang atau tidak senang pada performan guru, pelajaran, atau lingkungan sekitarnya. Dan untuk mengantisipasi munculnya sikap yang negative dalam belajar, guru sebaiknya berusaha untuk menjadi guru yang professional dan bertanggungjawab terhadap profesi yang dipilihnya.
Dengan profesionalitas,seorang guru akan berusaha memberikan yang terbaik bagi siswanya; berusaha mengambangkan kepribadian sebagai seorang guru yang empatik, sabar, dan tulus kepada muridnya; berusaha untuk menyajikan pelajaranyang diampunya dengan baik dan menarik sehingga membuat siswa dapat mengikuti pelajaran dengan senang dan tidak menjemukan; meyakinkansiswa bahwa bidang studi yang dipelajara bermanfaat bagi ddiri siswa.
- Bakat
Faktor psikologis lain yang memengaruhi proses belajar adalah bakat. Secara umum, bakat (aptitude) didefinisikan sebagai kemampuan potensial yang dimiliki seseorang untuk mencapai keberhasilan pada masa yang akan datang (Syah, 2003). Berkaitan dengan belajar, Slavin (1994) mendefinisikan bakat sebagai kemampuan umum yang dimilki seorang siswa untauk belajar.
Dengan demikian, bakat adalah kemampuan seseorang menjadi salah satukomponen yang diperlukan dalam proses belajar seseorang. Apabila bakat seseorang sesuai dengan bidang yang sedang dipelajarinya, maka bakat itu akan mendukung proses belajarnya sehingga kemungkinan besar ia akan berhasil.
Pada dasarnya setiap orang mempunyai bakat atau potensi untuk mencapai prestasi belajar sesuai dengan kemampuannya masing-masing. Karena itu, bakat juga diartikan sebagai kemampuan dasar individu untuk melakukan tugas tertentu tanpa tergantung upaya pendidikan dan latihan. Individu yang telah mempunyai bakat tertentu, akan lebih mudah menyerap informasiyang berhungan dengan bakat yang dimilkinya. Misalnya, siswa yang berbakat dibidang bahasa akan lebih mudah mempelajari bahasa-bahasa yang lain selain bahasanya sendiri.
Karena belajar jug dipengaruhi oleh potensi yang dimilki setiap individu,maka para pendidik, orangtua, dan guru perlu memerhatikan dan memahami bakat yang dimilki oleh anaknya atau peserta didiknya, anatara lain dengan mendukung,ikut mengembangkan, dan tidak memaksa anak untuk memilih jurusan yang tidak sesuai dengan bakatnya.
B. Factor-faktor eksogen/eksternal
Selain karakteristik siswa atau factor-faktor endogen, factor-faktor eksternal juga dapat memengaruhi proses belajar siswa.dalam hal ini, Syah (2003) menjelaskan bahwa faktaor-faktor eksternal yang memengaruhi balajar dapat digolongkan menjadi dua golongan, yaitu factor lingkungan social dan factor lingkungan nonsosial.
1) Lingkungan social
a. Lingkungan social sekolah, seperti guru, administrasi, dan teman-teman sekelas dapat memengaruhi proses belajar seorang siswa. Hubungan harmonis antra ketiganya dapat menjadi motivasi bagi siswa untuk belajar lebih baik di sekolah. Perilaku yang simpatik dan dapat menjadi teladan seorang guru atau administrasi dapat menjadi pendorong bagi siswa untuk belajar.
b. Lingkungan social masyarakat. Kondisi lingkungan masyarakat tempat tinggal siswa akan memengaruhi belajar siswa. Lingkungan siswa yang kumuh, banyak pengangguran dan anak terlantar juga dapat mempengaruhi aktivitas belajar siswa, paling tidak siswa kesulitan ketika memerlukan teman belajar, diskusi, atau meminjam alat-alat belajar yang kebetulan belum dimilkinya.
c. Lingkungan social keluarga. Lingkungan ini sangat memengaruhi kegiatan belajar. Ketegangan keluarga, sifat-sifat orang tua, demografi keluarga (letak rumah), pengelolaan keluarga, semuannya dapat memberi dampak terhadap aktivitas belajar siswa. Hubungan anatara anggota keluarga, orangtua, anak, kakak, atau adik yang harmonis akan membantu siswa melakukan aktivitas belajar dengan baik.
2) Lingkungan non social.
Faktor-faktor yang termasuk lingkungan nonsosial adalah;
a. Lingkungan alamiah, seperti kondisi udara yang segar, tidak panas dan tidak dingin, sinar yang tidak terlalu silau/kuat, atau tidak terlalu lemah/gelap, suasana yang sejuk dantenang. Lingkungan alamiah tersebut mmerupakan factor-faktor yang dapat memengaruhi aktivitas belajar siswa. Sebaliknya, bila kondisi lingkungan alam tidak mendukung, proses belajar siswa akan terlambat.
b. Factor instrumental,yaitu perangkat belajar yang dapat digolongkan dua macam. Pertama, hardware, seperti gedung sekolah, alat-alat belajar,fasilitas belajar, lapangan olah raga dan lain sebagainya. Kedua, software, seperti kurikulum sekolah, peraturan-peraturan sekolah, bukupanduan, silabi dan lain sebagainya.
c. Factor materi pelajaran (yang diajarkan ke siswa). Factor ini hendaknya disesuaikan dengan usia perkembangan siswa begitu juga denganmetode mengajar guru, disesuaikandengan kondisi perkembangan siswa. Karena itu, agar guru dapat memberikan kontribusi yang postif terhadap aktivitas belajr siswa, maka guru harus menguasai materi pelajaran dan berbagai metode mengajar yang dapat diterapkan sesuai dengan konsdisi siswa.
C. Faktor Pendekatan Belajar
Penerapan pendekatan belajar aktif (active learning strategy) dapat sepenuhnya diterapkan dengan menggunakan metode yang bervariasi, menciptakan interaksi dengan cara bekerjasama dengan para orang tua siswa dalam meningkatkan motivasi dan dorongan pada siswa dalam proses belajar mengajar, sehingga dapat menumbuhkan dan mengembangkan keaktifan siswa, serta menambah jam pelajaran diluar jam pelajaran yang ada. Sehingga siswa dapat menerima pelajaran yang baru yang mungkin tidak didapatkannya pada jam-jam pelajaran yang ada tersebut. Jadi disini penerapan pendekatan belajar aktif (active learning strategy) dapat diterapkan betul-betul dan merupakan strategi belajar yang bisa mencapai hasil yang maksimal.
Secara umum factor-faktor yag mempengaruhi proses hasil belajar dibedakan atas dua kategori, yaitu factor internal dan factor eksternal . kedua factor tersebut saling memengaruhi dalam proses individu sehingga menentukan kualitas hasil belajar.
A. Faktor Internal
Factor internal adalah factor-faktor yang berasal dari dalam diri individu dan dapat memengaruhi hasil belajar individu. Factor-faktor internal ini meliputi factor fisiologis dan factor psikologiss.
1. Factor fisiologis
Factor-faktor fisiologis adalah factor-factor yang berhubungan dengan kondisi fisik individu. Factor-factor ini dibedakan menjadi dua macam.
Pertama, keadaan tonus jasmani. Keadaan tonus jasmani pada umumnya sangat memengaruhi aktivitas belajar seseorang . kondisi fisik yang sehat dan bugar akan memberikan pengaruh positif terhadap kegiatan belajar individu. Sebaliknya, kondisi fisik yang lemah atau sakit akan menghambat tercapainya hasil belajar yang maksimal. Oleh karena itu keadaan tonus jasmani sangat memengaruhi proses belajar , maka perlu ada usaha untuk menjaga kesehatan jasmani.
Cara untuk menjaga kesehatan jasmani antara lain adalah :
a. menjaga pola makan yang sehat dengan memerhatikan nutrisi yang masuk kedalam tubuh, karena kekurangan gizi atau nutrisi akan mengakibatkan tubuh cepat lelah, lesu , dan mengantuk, sehingga tidak ada gairah untuk belajar,
b. rajin berolah raga agar tubuh selalu bugar dan sehat;
c. istirahat yang cukup dan sehat.
Kedua, keadaan fungsi jasmani/fisiologis. Selama proses belajar berlangsung, peran fungsi fisiologis pada tubuh manusia sangat memengaruhi hasil belajar, terutama panca indra. Panca indra yang berfunsi dengan baik akan mempermudah aktivitas belajar dengan baik pula . dalam proses belajar , merupakan pintu masuk bagi segala informasi yang diterima dan ditangkap oleh manusia. Sehinga manusia dapat menangkap dunia luar. Panca indra yang memiliki peran besar dalam aktivitas belajar adalah mata dan telinga. Oleh lkarena itu, baik guru maupun siswwa perlu menjaga panca indra dengan baik, baik secara preventif maupun secara yang bersifat kuratif. Dengan menyediakan sarana belajar yang memenuhi persyaratan, memeriksakan kesehatan fungsi mata dan telinga secara periodic, mengonsumsi makanan yang bergizi , dan lain sebagainya.
2. Factor psikologis
Factor –faktor psikologis adalah keadaan psikologis seseorang yang dapat memengaruhi proses belajar. Beberapa factor psikologis yang utama memngaruhi proses belajar adalah kecerdasan siswa, motifasi , minat, sikap dan bakat.
– Kecerdasan / Intelegensia Siswa
Pada umumnya kecerdasan diartikan sebagai kemempuan psiko-fisik dalam mereaksikan rangsaganan atau menyesuaikan diri dengan lingkungan melalui cara yang tepat. Dengan demikian, kecerdasan bukan hanya berkaitan dengan kualitas otak saja, tetapi juga organ-organ tubuh lainnya. Namun bila dikaitkan dengan kecerdasan, tentunya otak merupakan organ yang penting dibandingkan organ yang lain, karena fungsi otak itu sebagai organ pengendali tertinggi (executive control) dari hamper seluruh aktivitas manusia.
Kecerdasan merupakan factor psikologis yang paling penting dalam proses belajar siswa, karena itu menentukan kualitas belajar siswa. Semakin tinggi iteligensi seorang individu, semakin besar peluang individu tersebut meraih sukses dalam belajar. Sebaliknya, semakin rendah tingkat intelegensi individu, semakin sulit individu itu mencapai kesuksesan belajar. Oleh karena itu, perlu bimbingan belajar dari orang lain, seperti guru, orang tua, dan lain sebagainya. Sebagai factor psikologis yang penting dalam mencapai kesuksesan belajar, maka pengetahuan dan pemahaman tentang kecerdasan perlu dimiliki oleh setiap calon guru professional, sehingga mereka dapat memahami tingakat kecerdasannya.
Para ahli membagi tingkatan IQ bermacam-macam, salah satunya adalah penggolongan tingkat IQ berdasarkan tes Stanford-Biner yang telah direvisi oleh Terman dan Merill sebagai berikut ((Fudyartanto 2002).
Distribusi Kecerdasan IQ menurut Stanford Revision
Tingkat kecerdasan (IQ) Klasifikasi
140 – 169 Amat superior
120 – 139 Superior
110 – 119 Rata-rata tinggi
90 – 109 Rata-rata
80 – 89 Rata-rata rendah
70 – 79 Batas lemah mental
20 — 69 Lemah mental
Dari table tersebut, dapat diketahui ada 7 penggolongan tingkat kecerdasan manusia, yaitu:
A. Kelompok kecerdasan amat superior (very superior) merentang antara IQ 140—IQ 169;
B. Kelompok kecerdasan superior merenytang anatara IQ 120—IQ 139;
C. Kelompok rata-rata tinggi (high average) menrentang anatara IQ 110—IQ 119;
D. Kelompok rata-rata (average) merentang antara IQ 90—IQ 109;
E. Kelompok rata-rata rendah (low average) merentang antara IQ 80—IQ 89;
F. Kelompok batas lemah mental (borderline defective) berada pada IQ 70—IQ 79;
G. Kelompok kecerdasan lemah mental (mentally defective) berada pada IQ 20—IQ 69, yang termasuk dalam kecerdasan tingkat ini antara lain debil, imbisil, idiot.
Pemahaman tentang tingkat kecerdasan individu dapat diperoleh oleh orang tua dan guru atau pihak-pihak yang berkepentingan melalui konsultasi dengan psikolog atau psikiater. Sehingga dapat diketahui anak didik berada pada tingkat kecerdasan yang mana, amat superior, superior, rata-rata, atau mungkin malah lemah mental. Informasi tentang taraf kecerdasan seseorang merupakan hal yang sangat berharga untuk memprediksi kamampuan belajar seseorang. Pemahaman terhadap tingkat kecerdasan peserta didik akan membantu megarahkan dan merencanakan bantuan yang akan diberikan kepada siswa.
- Motivasi
Motivasi adalah salah satu factor yang memengaruhi keefektifan kegiatan belajar siswa. Motivasilah yang mendorong siswa ingin melakukan kegiatan belajar. Para ahli psikologi mendefinisikan motivasi sebagai proses di dalam diri individu yang aktif, mendorong, memberikan arah, dan menjaga perilaku setiap saat (Slavin, 1994). Motivasi juga diartikan sebagai pengaruh kebutuhan-kebutuhan dan keinginan terhadap intensitas dan arah perilaku seseorang.
Dari sudut sumbernya motivasi dibagi menjadi dua, yaitu motivasi intrinsic dan motivasi ekstrinsik. Motaivasi intrinsic adalah semua factor yang berasal dari dalam diri individu dan memberikan dorongan untuk melakukan sesuatu. Seperti seorang siswa yang gemar membaca, maka ia tidak perlu disuruh-suruh untuk membaca, karena membaca tidak hanya menjadi aktifitas kesenangannya, tapi bisa jadi juga telah mejadi kebutuhannya. Dalam proses belajar, motivasi intrinsic memiliki pengaruh yang efektif, karena motivasi intrinsic relaatif lebih lama dan tidak tergantung pada motivasi dari luar(ekstrinsik).
Menurut Arden N. Frandsen (Hayinah, 1992), yang termasuk dalam motivasi intrinsic untuk belajar anatara lain adalah:
a. Dorongan ingin tahu dan ingin menyelisiki dunia yang lebih luas;
b. Adanya sifat positif dan kreatif yang ada pada manusia dan keinginan untuk maju;
c. Adanaya keinginan untuk mencapai prestasi sehingga mendapat dukungan dari orang-orang penting, misalkan orang tua, saudara, guru, atau teman-teman, dan lain sebaginya.
d. Adanya kebutuhan untuk menguasai ilmu atau pengetahuan yang berguna bagi dirinya, dan lain-lain.
Motivasi ekstrinsik adalah factor yang dating dari luar diri individu tetapi memberi pengaruh terhadap kemauan untauk belajar. Seperti pujian, peraturan, tata tertib, teladan guru, orangtua, danlain sebagainya. Kurangnya respons dari lingkungansecara positif akan memengaruhi semangat belajar seseorang menjadi lemah.
- Minat
Secara sederhana,minat (interest) berarti kecemnderungan dan kegairahan yang tinggi atau keinginan yang besar terhadap sesuatu. Menurut Reber (Syah, 2003) minat bukanlah istilah yang popular dalam psikologi disebabkan ketergantungannya terhadap berbagai factor internal lainnya, seperti pemusatan perhatian, keingintahuan, moativasi, dan kebutuhan.
Namun lepas dari kepopulerannya, minat sama halnya dengan kecerdasan dan motivasi, karena memberi pengaruh terhadap aktivitas belajar, ia akan tidak bersemangat atau bahkan tidak mau belajar. Oleh karena itu, dalam konteks belajar di kelas, seorang guru atau pendidik lainnya perlu membangkitkan minat siswa agar tertarik terhadap materi pelajaran yang akan dihadapainya atau dipelajaranya.
Untuk membagkitkan minat belajar tersebut, banyak cara yang bisa digunakan. Anatara lain:
Pertama, dengan mebuat materi yang akan dipelajarai semenarik mungkin dan tidak membosankan, baik dari bentuk buku materi, desai pembelajaran yang membebaskan siswa mengeksplor apa yang dipelajari, melibatkan seluruh domain belajar siswa (kognitif, afektif, psikomotorik) sehingga siswa menjadi aktif, maupun performansi guru yang menarik saat mengajar.
Kedua, pemilihan jurusan atau bidang studi. Dalam hal ini, alangkah baiknya jika jurusan atau bidang studi dipilih sendiri oleh siswa sesuai dengan minatnya.
- Sikap
Dalam proses belajar, sikap individu dapat memengaruhi keberhasilan proses belajarnya. Sikap adalah gejala internal yang mendimensi afektif berupa kecenderungan untuk mereaksi atau merespons dangan cara yang relative tetap terhadap obyek, orang, peristiwa dan sebaginya, baik secara positif maupun negative (Syah, 2003).
Sikap siswa dalam belajar dapat dipengaruhi oleh perasaan senang atau tidak senang pada performan guru, pelajaran, atau lingkungan sekitarnya. Dan untuk mengantisipasi munculnya sikap yang negative dalam belajar, guru sebaiknya berusaha untuk menjadi guru yang professional dan bertanggungjawab terhadap profesi yang dipilihnya.
Dengan profesionalitas,seorang guru akan berusaha memberikan yang terbaik bagi siswanya; berusaha mengambangkan kepribadian sebagai seorang guru yang empatik, sabar, dan tulus kepada muridnya; berusaha untuk menyajikan pelajaranyang diampunya dengan baik dan menarik sehingga membuat siswa dapat mengikuti pelajaran dengan senang dan tidak menjemukan; meyakinkansiswa bahwa bidang studi yang dipelajara bermanfaat bagi ddiri siswa.
- Bakat
Faktor psikologis lain yang memengaruhi proses belajar adalah bakat. Secara umum, bakat (aptitude) didefinisikan sebagai kemampuan potensial yang dimiliki seseorang untuk mencapai keberhasilan pada masa yang akan datang (Syah, 2003). Berkaitan dengan belajar, Slavin (1994) mendefinisikan bakat sebagai kemampuan umum yang dimilki seorang siswa untauk belajar.
Dengan demikian, bakat adalah kemampuan seseorang menjadi salah satukomponen yang diperlukan dalam proses belajar seseorang. Apabila bakat seseorang sesuai dengan bidang yang sedang dipelajarinya, maka bakat itu akan mendukung proses belajarnya sehingga kemungkinan besar ia akan berhasil.
Pada dasarnya setiap orang mempunyai bakat atau potensi untuk mencapai prestasi belajar sesuai dengan kemampuannya masing-masing. Karena itu, bakat juga diartikan sebagai kemampuan dasar individu untuk melakukan tugas tertentu tanpa tergantung upaya pendidikan dan latihan. Individu yang telah mempunyai bakat tertentu, akan lebih mudah menyerap informasiyang berhungan dengan bakat yang dimilkinya. Misalnya, siswa yang berbakat dibidang bahasa akan lebih mudah mempelajari bahasa-bahasa yang lain selain bahasanya sendiri.
Karena belajar jug dipengaruhi oleh potensi yang dimilki setiap individu,maka para pendidik, orangtua, dan guru perlu memerhatikan dan memahami bakat yang dimilki oleh anaknya atau peserta didiknya, anatara lain dengan mendukung,ikut mengembangkan, dan tidak memaksa anak untuk memilih jurusan yang tidak sesuai dengan bakatnya.
B. Factor-faktor eksogen/eksternal
Selain karakteristik siswa atau factor-faktor endogen, factor-faktor eksternal juga dapat memengaruhi proses belajar siswa.dalam hal ini, Syah (2003) menjelaskan bahwa faktaor-faktor eksternal yang memengaruhi balajar dapat digolongkan menjadi dua golongan, yaitu factor lingkungan social dan factor lingkungan nonsosial.
1) Lingkungan social
a. Lingkungan social sekolah, seperti guru, administrasi, dan teman-teman sekelas dapat memengaruhi proses belajar seorang siswa. Hubungan harmonis antra ketiganya dapat menjadi motivasi bagi siswa untuk belajar lebih baik di sekolah. Perilaku yang simpatik dan dapat menjadi teladan seorang guru atau administrasi dapat menjadi pendorong bagi siswa untuk belajar.
b. Lingkungan social masyarakat. Kondisi lingkungan masyarakat tempat tinggal siswa akan memengaruhi belajar siswa. Lingkungan siswa yang kumuh, banyak pengangguran dan anak terlantar juga dapat mempengaruhi aktivitas belajar siswa, paling tidak siswa kesulitan ketika memerlukan teman belajar, diskusi, atau meminjam alat-alat belajar yang kebetulan belum dimilkinya.
c. Lingkungan social keluarga. Lingkungan ini sangat memengaruhi kegiatan belajar. Ketegangan keluarga, sifat-sifat orang tua, demografi keluarga (letak rumah), pengelolaan keluarga, semuannya dapat memberi dampak terhadap aktivitas belajar siswa. Hubungan anatara anggota keluarga, orangtua, anak, kakak, atau adik yang harmonis akan membantu siswa melakukan aktivitas belajar dengan baik.
2) Lingkungan non social.
Faktor-faktor yang termasuk lingkungan nonsosial adalah;
a. Lingkungan alamiah, seperti kondisi udara yang segar, tidak panas dan tidak dingin, sinar yang tidak terlalu silau/kuat, atau tidak terlalu lemah/gelap, suasana yang sejuk dantenang. Lingkungan alamiah tersebut mmerupakan factor-faktor yang dapat memengaruhi aktivitas belajar siswa. Sebaliknya, bila kondisi lingkungan alam tidak mendukung, proses belajar siswa akan terlambat.
b. Factor instrumental,yaitu perangkat belajar yang dapat digolongkan dua macam. Pertama, hardware, seperti gedung sekolah, alat-alat belajar,fasilitas belajar, lapangan olah raga dan lain sebagainya. Kedua, software, seperti kurikulum sekolah, peraturan-peraturan sekolah, bukupanduan, silabi dan lain sebagainya.
c. Factor materi pelajaran (yang diajarkan ke siswa). Factor ini hendaknya disesuaikan dengan usia perkembangan siswa begitu juga denganmetode mengajar guru, disesuaikandengan kondisi perkembangan siswa. Karena itu, agar guru dapat memberikan kontribusi yang postif terhadap aktivitas belajr siswa, maka guru harus menguasai materi pelajaran dan berbagai metode mengajar yang dapat diterapkan sesuai dengan konsdisi siswa.
C. Faktor Pendekatan Belajar
Penerapan pendekatan belajar aktif (active learning strategy) dapat sepenuhnya diterapkan dengan menggunakan metode yang bervariasi, menciptakan interaksi dengan cara bekerjasama dengan para orang tua siswa dalam meningkatkan motivasi dan dorongan pada siswa dalam proses belajar mengajar, sehingga dapat menumbuhkan dan mengembangkan keaktifan siswa, serta menambah jam pelajaran diluar jam pelajaran yang ada. Sehingga siswa dapat menerima pelajaran yang baru yang mungkin tidak didapatkannya pada jam-jam pelajaran yang ada tersebut. Jadi disini penerapan pendekatan belajar aktif (active learning strategy) dapat diterapkan betul-betul dan merupakan strategi belajar yang bisa mencapai hasil yang maksimal.
Minggu, 16 Mei 2010
EKOLOGI
Komunitas Ditinjau dari segi fungsinya:
• Komponen-komponen komunitas mempunyai kemampuan untuk hidup pada linkungan yang sama di suatu tempat dan untuk hidup saling bergantung yang satu dengan yang lain.
• Komunitas mempunyai derajat keterpaduan yang lebih tinggi dari pada individu-2 dan populasi tumbuhan dan hewan yang menyusunnya.
• Komposisi komunitas ditentukan oleh seleksi tumbuhan dan hewan yang kebetulan mencapai dan mampu di tempat tsb, dan
• Kegiatan anggota-anggota komunitas bergantung pada penyesuaian dirisetiap individu terhadap faktor-2 fisik dan biologi yang ada di tempat tsb.
• Bila ditinjau dari segi deskriptif suatu komunitas dicirikan oleh komposisinya yang tertentu.
• Seringkali perubahan komposisi jenis satu komunitas ke komunitas lain sangat nyata,dan bila jenis-2 utama dari dua komunitas berbeda sekali, batas antara komunitas itu akan jelas pula. Tetapi dapat juga perubahan komposisi terjadi secara berangsur-angsur sehingga batas tersebut tidak jelas.
• Perubahan komposisi berkaitan dengan perubahan faktor lingkungan, misalnya topografi,tanah, kelembaban,temperatur, atau iklim (bila mencakup kawasan yg luas).
bioTop
Suatu komunitas dapat mengkarakteristikkan suatu unit lingkungan yg mempunyai kondisi habitat utama yg seragam.
Contoh : hamparan lumpur, pantai pasir, gurun pasir, dan unit lautan.
Biotop ditentukan oleh sidat-2 fisik.
Biotop dapat pula dicirikan oleh unsur organismenya, misal : padang alang-alang, hutan tusam, hutan cemara, rawa kumpai dsb.
Dalam suatu komunitas pengendali kehadiran jenis-2 dapat berupa satu atau beberapa jenis tertentu atau dapat pula sifat-2 fisik habitat. Meskipun demikian tidak ada batas yg nyata antara keduanya, sebab kedua-duanya dapat saja beroperasi secara bersama-sama atau saling mempengaruhi.
Kehadiran jenis dapat menciptakan lingkungan yg cocok utk pertumb jenis hewan dan tumbuhan tertentu.
Jenis yg dapat mengendalikan kehadiran jenis lain disebut sebagai jenis dominan.
Karakteristik komunitas di kawasan tropik adalah KEANEKARAGAMAN.
Keanekaragaman kecil terdapat pada komunitasyg terpadat pd daerah lingkungan yg ekstrem, misal daerah kering, tanah miskin dan pegunungan tinggi.
Diversity is stability.
Sistem daur hara di daerah tropik cepat.
Whittaker, 1970 mengemukakan bahwa ada tiga konsep yang dapat diterapkan dalam mengamati pola komunitas :
1. Konsep gradasi lingkungan (enviroment al gradient).
2. Gradasi komunitas (community gradient).
3. Gradasi ekosistem (ecocline).
Penelitian komunitas dengan menghubungkan ketiga gradasi (gradasi faktor lingkungan, populasi dan karakteristik komunitas) disebut analysis gradasi (gradient analisis).
Analisis gradasi ↔ variasi lingkungan, variasi populasi jenis dan komunitas.
(dikorelasikan)
Pengaturan koordinasi (ordination) → pengaturan komunitas-komunitas dalam suatu deretan menurut komposisinya. → analisis gradasi tidak langsung (indirect gradient analysis.
Analysis gradient dan indirect gradient analysis →alternatif pendekatan komunitas kualifikasi.
Beberapa Gradasi Ekosistem Utama
a. Gradasi Iklim di sebelah selatan A.S.
b. Gradasi Iklim di daerah tropis A.S.
c. Gradasi Temperatur di pegunungan.
d. Gradasi Temperatur dari daerah tropis ke sub kutub.
E
• Komponen-komponen komunitas mempunyai kemampuan untuk hidup pada linkungan yang sama di suatu tempat dan untuk hidup saling bergantung yang satu dengan yang lain.
• Komunitas mempunyai derajat keterpaduan yang lebih tinggi dari pada individu-2 dan populasi tumbuhan dan hewan yang menyusunnya.
• Komposisi komunitas ditentukan oleh seleksi tumbuhan dan hewan yang kebetulan mencapai dan mampu di tempat tsb, dan
• Kegiatan anggota-anggota komunitas bergantung pada penyesuaian dirisetiap individu terhadap faktor-2 fisik dan biologi yang ada di tempat tsb.
• Bila ditinjau dari segi deskriptif suatu komunitas dicirikan oleh komposisinya yang tertentu.
• Seringkali perubahan komposisi jenis satu komunitas ke komunitas lain sangat nyata,dan bila jenis-2 utama dari dua komunitas berbeda sekali, batas antara komunitas itu akan jelas pula. Tetapi dapat juga perubahan komposisi terjadi secara berangsur-angsur sehingga batas tersebut tidak jelas.
• Perubahan komposisi berkaitan dengan perubahan faktor lingkungan, misalnya topografi,tanah, kelembaban,temperatur, atau iklim (bila mencakup kawasan yg luas).
bioTop
Suatu komunitas dapat mengkarakteristikkan suatu unit lingkungan yg mempunyai kondisi habitat utama yg seragam.
Contoh : hamparan lumpur, pantai pasir, gurun pasir, dan unit lautan.
Biotop ditentukan oleh sidat-2 fisik.
Biotop dapat pula dicirikan oleh unsur organismenya, misal : padang alang-alang, hutan tusam, hutan cemara, rawa kumpai dsb.
Dalam suatu komunitas pengendali kehadiran jenis-2 dapat berupa satu atau beberapa jenis tertentu atau dapat pula sifat-2 fisik habitat. Meskipun demikian tidak ada batas yg nyata antara keduanya, sebab kedua-duanya dapat saja beroperasi secara bersama-sama atau saling mempengaruhi.
Kehadiran jenis dapat menciptakan lingkungan yg cocok utk pertumb jenis hewan dan tumbuhan tertentu.
Jenis yg dapat mengendalikan kehadiran jenis lain disebut sebagai jenis dominan.
Karakteristik komunitas di kawasan tropik adalah KEANEKARAGAMAN.
Keanekaragaman kecil terdapat pada komunitasyg terpadat pd daerah lingkungan yg ekstrem, misal daerah kering, tanah miskin dan pegunungan tinggi.
Diversity is stability.
Sistem daur hara di daerah tropik cepat.
Whittaker, 1970 mengemukakan bahwa ada tiga konsep yang dapat diterapkan dalam mengamati pola komunitas :
1. Konsep gradasi lingkungan (enviroment al gradient).
2. Gradasi komunitas (community gradient).
3. Gradasi ekosistem (ecocline).
Penelitian komunitas dengan menghubungkan ketiga gradasi (gradasi faktor lingkungan, populasi dan karakteristik komunitas) disebut analysis gradasi (gradient analisis).
Analisis gradasi ↔ variasi lingkungan, variasi populasi jenis dan komunitas.
(dikorelasikan)
Pengaturan koordinasi (ordination) → pengaturan komunitas-komunitas dalam suatu deretan menurut komposisinya. → analisis gradasi tidak langsung (indirect gradient analysis.
Analysis gradient dan indirect gradient analysis →alternatif pendekatan komunitas kualifikasi.
Beberapa Gradasi Ekosistem Utama
a. Gradasi Iklim di sebelah selatan A.S.
b. Gradasi Iklim di daerah tropis A.S.
c. Gradasi Temperatur di pegunungan.
d. Gradasi Temperatur dari daerah tropis ke sub kutub.
E
Minggu, 04 April 2010
ANNELIDA (SEGMENT WORM)
[close]
Scholarship applications for Wikimania 2010 are now open. Apply now!
[Hide]
[Help us with translations!]
Annelid
From Wikipedia, the free encyclopedia
(Redirected from Annelida)
Jump to: navigation, search
Annelids
Fossil range: 518–0 Ma
PreЄ
Є
O
S
D
C
P
T
J
K
Pg
N
Cambrian - Recent
Glycera sp.
Scientific classification
Kingdom: Animalia
Superphylum: Lophotrochozoa
Phylum: Annelida
Lamarck, 1809
Classes and subclasses
Class Polychaeta (paraphyletic?)
Class Clitellata (see below)
Oligochaeta - earthworms, etc.
Branchiobdellida
Hirudinea - leeches
Class Myzostomida
Class Archiannelida (polyphyletic)
The annelids ( also called Ringed Worm ), collectively called Annelida (from French annelés "ringed ones", ultimately from Latin anellus "little ring"[1]), are a large phylum of segmented worms, with over 17,000 modern species including ragworms, earthworms and leeches. They are found in marine environments from tidal zones to hydrothermal vents, in freshwater, and in moist terrestrial environments. Although most textbooks still use the traditional division into polychaetes (almost all marine), oligochaetes (which include earthworms) and leech-like species, research since 1997 has radically changed this scheme, viewing leeches as a sub-group of oligochaetes and oligochaetes as a sub-group of polychaetes. In addition, the Pogonophora, Echiura and Sipuncula, previously regarded as separate phyla, are now regarded as sub-groups of polychaetes. Annelids are considered members of the Lophotrochozoa, a "super-phylum" of protostomes that also includes molluscs, brachiopods, flatworms and nemerteans.
The basic annelid form consists of multiple segments, each of which has the same sets of organs and, in most polychaetes, a pair of parapodia that many species use for locomotion. Septa separate the segments of many species, but are poorly-defined or absent in some, and Echiura and Sipuncula show no obvious signs of segmentation. In species with well-developed septa, the blood circulates entirely within blood vessels, and the vessels in segments near the front ends of these species are often built up with muscles to act as hearts. The septa of these species also enable them to change the shapes of individual segments, which facilitates movement by peristalsis ("ripples" that pass along the body) or by undulations that improve the effectiveness of the parapodia. In species with incomplete septa or none, the blood circulates through the main body cavity without any kind of pump, and there is a wide range of locomotory techniques – some burrowing species turn their pharynges inside out to drag themselves through the sediment.
Although many species can reproduce asexually and use similar mechanisms to regenerate after severe injuries, sexual reproduction is the normal method in species whose reproduction has been studied. The minority of living polychaetes whose reproduction and lifecycles are known produce trochophore larvae, which live as plankton and then sink and metamorphose into miniature adults. Oligochaetes are full hermaphrodites and produce a ring-like cocoon round their bodies, in which the eggs and hatchlings are nourished until they are ready to emerge.
Earthworms support terrestrial food chains both as prey and by aerating and enriching soil. The burrowing of marine polychaetes, which may constitute up to a third of all species in near-shore environments, encourages the development of ecosystems by enabling water and oxygen to penetrate the sea floor. In addition to improving soil fertility, annelids serve humans as food and as bait. Scientists observe annelids to monitor the quality of marine and fresh water. Although blood-letting is no longer in favor with doctors, some leech species are regarded as endangered species because they have been over-harvested for this purpose in the last few centuries. Ragworms' jaws are now being studied by engineers as they offer an exceptional combination of lightness and strength.
Since annelids are soft-bodied, their fossils are rare – mostly jaws and the mineralized tubes that some of the species secreted. Although some late Ediacaran fossils may represent annelids, the oldest known fossil that is identified with confidence comes from about 518 million years ago in the early Cambrian period. Fossils of most modern mobile polychaete groups appeared by the end of the Carboniferous, about 299 million years ago. Scientists disagree about whether some body fossils from the mid Ordovician, about 472 to 461 million years ago, are the remains of oligochaetes, and the earliest certain fossils of the group appear in the Tertiary period, which began 65 million years ago.
Contents
[hide]
* 1 Classification and diversity
* 2 Distinguishing features
* 3 Description
o 3.1 Segmentation
o 3.2 Body wall, chetae and parapodia
o 3.3 Nervous system and senses
o 3.4 Coelom, locomotion and circulatory system
o 3.5 Respiration
o 3.6 Feeding and excretion
o 3.7 Reproduction and life cycle
+ 3.7.1 Asexual reproduction
+ 3.7.2 Sexual reproduction
* 4 Ecological significance
* 5 Interaction with humans
* 6 Evolutionary history
o 6.1 Fossil record
o 6.2 Family tree
* 7 References
* 8 Further reading
* 9 External links
[edit] Classification and diversity
There are over 17,000 living annelid species,[2] ranging in size from microscopic to the Australian giant Gippsland earthworm, which can grow up to 3 metres (9.8 ft) long.[3][4] Although research since 1997 has radically changed scientists' views about the evolutionary family tree of the annelids,[5][6] most textbooks use the traditional classification into the following sub-groups:[3][7]
* Polychaetes (about 12,000 species[2]). As their name suggests, they have multiple chetae ("hairs") per segment. Polychaetes have parapodia that function as limbs, and nuchal organs ("nuchal" means "on the neck") that are thought to be chemosensors.[3] Most are marine animals, although a few species live in fresh water and even fewer on land.[8]
An earthworm's clitellum
* Clitellates (about 5,000 species[2]). These have few or no chetae per segment, and no nuchal organs or parapodia. However, they have a unique reproductive organ, the ring-shaped clitellum ("pack saddle") round their bodies, which produces a cocoon that stores and nourishes fertilized eggs until they hatch.[7][9] The clitellates are sub-divided into:[3]
o Oligochaetes ("with few hairs"), which includes earthworms. Oligochaetes have a sticky pad in the roof of the mouth.[3] Most are burrowers that feed on wholly or partly decomposed organic materials.[8]
o Hirudinea, whose name means "leech-shaped" and whose best known members are leeches.[3] Marine species are mostly blood-sucking parasites, mainly on fish, while most freshwater species are predators.[8] They have suckers at both ends of their bodies, and use these to move rather like inchworms.[10]
The Archiannelida, minute annelids that live in the spaces between grains of sediment, were treated as a separate class because of their simple body structure, but are now regarded as polychaetes.[7] Some other groups of animals have been classified in various ways, but are now widely regarded as annelids:
* Pogonophora / Siboglinidae were first discovered in 1914, and their lack of a recognizable gut made it difficult to classify them. They have been classified as a separate phylum, Pogonophora, or as two phyla, Pogonophora and Vestimentifera. More recently they have been re-classified as a family, Siboglinidae, within the polychaetes.[8][11]
* The Echiura have a checkered taxonomic history: in the 19th century they were assigned to the phylum "Gephyrea", which is now empty as its members have been assigned to other phyla; the Echiura were next regarded as annelids until the 1940s, when they were classified as a phylum in their own right; but a molecular phylogenetics analysis in 1997 concluded that Echiurans are annelids.[2][11][12]
* Myzostomida live on crinoids and other echinoderms, mainly as parasites. In the past they have been regarded as close relatives of the trematode flatworms or of the tardigrades, but in 1998 it was suggested that they are a sub-group of polychaetes.[8] However, another analysis in 2002 suggested that myzostomids are more closely related to flatworms or to rotifers and acanthocephales.[11]
[edit] Distinguishing features
No single feature distinguishes Annelids from other invertebrate phyla, but they have a distinctive combination of features. Their bodies are long, with segments that are divided externally by shallow ring-like constrictions called annuli and internally by septa ("partitions") at the same points, although in some species the septa are incomplete and in a few cases missing. Most of the segments contain the same sets of organs, although sharing a common gut, circulatory system and nervous system makes them inter-dependent.[3][7] Their bodies are covered by a cuticle (outer covering) that does not contain cells but is secreted by cells in the skin underneath, is made of tough but flexible collagen[3] and does not molt[13] – on the other hand arthropods' cuticles are made of the more rigid α-chitin,[3][14] and molt until the arthropods reach their full size.[15] Most annelids have closed circulatory systems, where the blood makes its entire circuit via blood vessels.[13]
Summary of distinguishing features Annelida[3] Recently merged into Annelida[5] Closely-related Similar-looking phyla
Echiura[16] Sipuncula[17] Nemertea[18] Arthropoda[19] Onychophora[20]
External segmentation Yes no no Only in a few species Yes, except in mites no
Repetition of internal organs Yes no no Yes In primitive forms Yes
Septa between segments In most species no no No No No
Cuticle material collagen collagen collagen none α-chitin α-chitin
Molting Generally no;[13] but some polychaetes molt their jaws, and leeches molt their skins[21] no[22] no[22] no[22] Yes[15] Yes
Body cavity Coelom; but this is reduced or missing in many leeches and some small polychaetes[13] 2 coeloms, main and in proboscis 2 coeloms, main and in tentacles Coelom only in proboscis Hemocoel Hemocoel
Circulatory system Closed in most species Open outflow, return via branched vein Open Closed Open Open
[edit] Description
[edit] Segmentation
Prostomium
Peristomium
O Mouth
Growth zone
Pygidium
O Anus
Segments of an annelid[3][7]
Most of an annelid's body consists of segments that are practically identical, having the same sets of internal organs and external chaetae (Greek χαιτα, meaning "hair") and, in some species, appendages. However, the frontmost and rearmost sections are not regarded as true segments as they do not contain the standard sets of organs and do not develop in the same way as the true segments. The frontmost section, called the prostomium (Greek προ- meaning "in front of" and στομα meaning "mouth") contains the brain and sense organs, while the rearmost, called the pygidium (Greek πυγιδιον, meaning "little tail") contains the anus, generally on the underside. The first section behind the prostomium, called the peristomium (Greek περι- meaning "around" and στομα meaning "mouth"), is regarded by some zoologists as not a true segment, but in some polychaetes the peristomium has chetae and appendages like those of other segments.[3]
The segments develop one at a time from a growth zone just ahead of the pygidium, so that an annelid's youngest segment is just in front of the growth zone while the peristomium is the oldest. This pattern is called teloblastic growth.[3] Some groups of annelids, including all leeches,[10] have fixed maximum numbers of segments, while others add segments throughout their lives.[7]
The phylum's name is derived from the Latin word annelus, meaning "little ring".[2]
[edit] Body wall, chetae and parapodia
1 O Nephridiopore
2 Nephridium
3 Cuticle
4 Circular muscle
5 Longitudinal muscle
6 Peritoneum
7 Gut
8 Blood vessel
9 Nerve cord(s)
10 Coelom
Cross-section through a typical annelid[3][7]
Annelids' cuticles are made of collagen fibers, usually in layers that spiral in alternating directions so that the fibers cross each other. These are secreted by the one-cell deep epidermis (outermost skin layer). A few marine annelids that live in tubes lack cuticles, but their tubes have a similar structure, and mucus-secreting glands in the epidermis protect their skins.[3] Under the epidermis is the dermis, which is made of connective tissue, in other words a combination of cells and non-cellular materials such as collagen. Below this are two layers of muscles, which develop from the lining of the coelom (body cavity): circular muscles make a segment longer and slimmer when they contract, while under them are longitudinal muscles, usually four distinct strips,[13] whose contractions make the segment shorter and fatter.[3] Some annelids also have oblique internal muscles that connect the underside of the body to each side.[13]
The chetae ("hairs") of annelids project out from the epidermis to provide traction and other capabilities. The simplest are unjointed and form paired bundles near the top and bottom of each side of each segment. The parapodia ("limbs") of annelids that have them often bear more complex chetae at their tips – for example jointed, comb-like or hooked.[3] Chetae are made of moderately flexible β-chitin and are formed by follicles, each of which has a chaetoblast ("hair-forming") cell at the bottom and muscles that can extend or retract the cheta. The chetoblasts produce chetae by forming microvilli, fine hair-like extensions that increase the area available for secreting the cheta. When the cheta is complete, the microvilli withdraw into the chetoblast, leaving parallel tunnels that run almost the full length of the cheta.[3] Hence annelids' chetae are structurally different from the setae ("bristles") of arthropods, which are made of the more rigid α-chitin, have a single internal cavity, and are mounted on flexible joints in shallow pits in the cuticle.[3]
Nearly all polychaetes have parapodia that function as limbs, while other major annelid groups lack them. Parapodia are unjointed paired extensions of the body wall, and their muscles are derived from the circular muscles of the body. They are often supported internally by one or more large, thick chetae. The parapodia of burrowing and tube-dwelling polychaetes are often just ridges whose tips bear hooked chetae. In active crawlers and swimmers the parapodia are often divided into large upper and lower paddles on a very short trunk, and the paddles are generally fringed with chetae and sometimes with cirri (fused bundles of cilia) and gills.[13]
[edit] Nervous system and senses
The brain generally forms a ring round the pharynx (throat), consisting of a pair of ganglia (local control centers) above and in front of the pharynx, linked by nerve cords either side of the pharynx to another pair of ganglia just below and behind it.[3] The brains of polychaetes are generally in the prostomium, while those of clitellates are in the peristomium or sometimes the first segment behind the peristomium.[23] In some very mobile and active polychaetes the brain is enlarged and more complex, with visible hindbrain, midbrain and forebrain sections.[13] The rest of the central nervous system is generally "ladder-like", consisting of a pair of nerve cords that run through the bottom part of the body and have in each segment paired ganglia linked by a transverse connection. From each segmental ganglion a branching system of local nerves runs into the body wall and then encircles the body.[3] However, in most polychaetes the two main nerve cords are fused, and in the tube-dwelling genus Owenia the single nerve chord has no ganglia and is located in the epidermis.[7][24]
As in arthropods, each muscle fiber (cell) is controlled by more than one neuron, and the speed and power of the fiber's contractions depends on the combined effects of all its neurons. Vertebrates have a different system, in which one neuron controls a group of muscle fibers.[3] Most annelids' longitudinal nerve trunks include giant axons (the output signal lines of nerve cells). Their large diameter decreases their resistance, which allows them to transmit signals exceptionally fast. This enables these worms to withdraw rapidly from danger by shortening their bodies. Experiments have shown that cutting the giant axons prevents this escape response but does not affect normal movement.[3]
The sensors are primarily single cells that detect light, chemicals, pressure waves and contact, and are present on the head, appendages (if any) and other parts of the body.[3] Nuchal ("on the neck") organs are paired, ciliated structures found only in polychaetes, and are thought to be chemosensors.[13] Some polychaetes also have various combinations of ocelli ("little eyes") that detect the direction from which light is coming and camera eyes or compound eyes that can probably form images.[24] The compound eyes probably evolved independently of arthropods' eyes.[13] Some tube-worms use ocelli widely spread over their bodies to detect the shadows of fish, so that they can quickly withraw into their tubes.[24] Some burrowing and tube-dwelling polychaetes have statocysts (tilt and balance sensors) that tell them which way is down.[24] A few polychaete genera have on the undersides of their heads palps that are used both in feeding and as "feelers", and some of these also have antennae that are structurally similar but probably are used mainly as "feelers".[13]
[edit] Coelom, locomotion and circulatory system
Most annelids have a pair of coeloms (body cavities) in each segment, separated from other segments by septa and from each other by vertical mesenteries. Each septum forms a sandwich with connective tissue in the middle and mesothelium (membrane that serves as a lining) from the preceding and following segments on either side. Each mesentery is similar except that the mesothelium is the lining of each of the pair of coeloms, and the blood vessels and, in polychaetes, the main nerve cords are embedded in it.[3] The mesothelium is made of modified epitheliomuscular cells,[3] in other words their bodies form part of the epithelium but their bases extend to form muscle fibers in the body wall.[25] The mesothelium may also form radial and circular muscles on the septa, and circular muscles around the blood vessels and gut. Parts of the mesothelium, especially on the outside of the gut, may also form chloragogen cells that perform similar functions to the livers of vertebrates: producing and storing glycogen and fat; producing the oxygen-carrier hemoglobin; breaking down proteins; and turning nitrogenous waste products into ammonia and urea to be excreted.[3]
Regenwurm.ogv
Play video
Peristalsis moves this "worm" to the right
Many annelids move by peristalsis (waves of contraction and expansion that sweep along the body),[3] or flex the body while using parapodia to crawl or swim.[26] In these animals the septa enable the circular and longitudinal muscles to change the shape of individual segments, by making each segment a separate fluid-filled "balloon".[3] However, the septa are often incomplete in annelids that are semi-sessile or that do not move by peristalsis or by movements of parapodia – for example some move by whipping movements of the body, some small marine species move by means of cilia (fine muscle-powered hairs) and some burrowers turn their pharynges (throats) inside out to penetrate the sea-floor and drag themselves into it.[3]
The fluid in the coeloms contains coelomocyte cells that defend the animals against parasites and infections. In some species coelomocytes may also contain a respiratory pigment – red hemoglobin in some species, green chlorocruorin in others[13] – and provide oxygen transport within their segments. Respiratory pigment is also dissolved in the blood plasma. Species with well-developed septa generally also have blood vessels running all long their bodies above and below the gut, the upper one carrying blood forwards while the lower one carries it backwards. Networks of capillaries (fine blood vessels) in the body wall and around the gut transfer blood between the main blood vessels and to parts of the segment that need oxygen and nutrients. Both of the major vessels, especially the upper one, can pump blood by contracting. In some annelids the forward end of the upper blood vessel is enlarged with muscles to form a heart, while in the forward ends of many earthworms some of the vessels that connect the upper and lower main vessels function as hearts. Species with poorly-developed or no septa generally have no blood vessels and rely on the circulation within the coelom for delivering nutrients and oxygen.[3]
However, leeches and their closest relatives have a body structure that is very uniform within the group but significantly different from that of other annelids, including other members of the Clitellata.[10] In leeches there are no septa, the connective tissue layer of the body wall is so thick that it occupies much of the body, and the two coeloms are widely separated and run the length of the body. They function as the main blood vessels, although they are side-by-side rather than upper and lower. However, they are lined with mesothelium, like the coeloms and unlike the blood vessels of other annelids. Leeches generally use suckers at their front and rear ends to move like inchworms. The anus is on the upper surface of the pygidium.[10]
[edit] Respiration
In some annelids, including earthworms, all respiration is via the skin. However, many polychaetes and some clitellates (the group to which earthworms belong) have gills associated with most segments, often as extensions of the parapodia in polychaetes. The gills of tube-dwellers and burrowers usually cluster around whichever end has the stronger water flow.[13]
[edit] Feeding and excretion
Feeding structures in the mouth region vary widely, and have little correlation with the animals' diets. Many polychaetes have a muscular pharynx that can be everted (turned inside out to extend it). In these animals the foremost few segments often lack septa so that, when the muscles in these segments contract, the sharp increase in fluid pressure from all these segments everts the pharynx very quickly. Two families, the Eunicidae and Phyllodocidae, have evolved jaws, which can be used for seizing prey, biting off pieces of vegetation, or grasping dead and decaying matter. On the other hand some predatory polychaetes have neither jaws nor eversible pharynges. Selective deposit feeders generally live in tubes on the sea-floor and use palps to find food particles in the sediment and then wipe them into their mouths. Filter feeders use "crowns" of palps covered in cilia that wash food particles towards their mouths. Non-selective deposit feeders ingest soil or marine sediments via mouths that are generally unspecialized. Some clitellates have sticky pads in the roofs of their mouths, and some of these can evert the pads to capture prey. Leeches often have an eversible proboscis, or a muscular pharynx with two or three teeth.[13]
The gut is generally an almost straight tube supported by the mesenteries (vertical partitions within segments), and ends with the anus on the underside of the pygidium.[3] However, in members of the tube-dwelling family Siboglinidae the gut is blocked by a swollen lining that houses symbiotic bacteria, which can make up 15% of the worms' total weight. The bacteria convert inorganic matter – such as hydrogen sulfide and carbon dioxide from hydrothermal vents, or methane from seeps – to organic matter that feeds themselves and their hosts, while the worms extend their palps into the gas flows to absorb the gases needed by the bacteria.[13]
Annelids with blood vessels use metanephridia to remove soluble waste products, while those without use protonephridia.[3] Both of these systems use a two-stage filtration process, in which fluid and waste products are first extracted and these are filtered again to re-absorb any re-usable materials while dumping toxic and spent materials as urine. The difference is that protonephridia combine both filtration stages in the same organ, while metanephridia perform only the second filtration and rely on other mechanisms for the first - in annelids special filter cells in the walls of the blood vessels let fluids and other small molecules pass into the coelomic fluid, where it circulates to the metanephridia.[27] In annelids the points at which fluid enters the protonephridia or metanephridia are on the forward side of a septum while the second-stage filter and the nephridiopore (exit opening in the body wall) are in the following segment. As a result the hindmost segment (before the growth zone and pygidium) has no structure that extracts its wastes, as there is no following segment to filter and discharge them, while the first segment contains an extraction structure that passes wastes to the second, but does not contain the structures that re-filter and discharge urine.[3]
[edit] Reproduction and life cycle
[edit] Asexual reproduction
This sabellid tubeworm is budding
Polychaetes can reproduce asexually, by dividing into two or more pieces or by budding off a new individual while the parent remains a complete organism.[3][28] Some oligochaetes, such as Aulophorus furcatus, seem to reproduce entirely asexually, while others reproduce asexually in summer and sexually in autumn. Asexual reproduction in oligochaetes is always by dividing into two or more pieces, rather than by budding.[7][29] However, leeches have never been seen reproducing asexually.[7][30]
Most polychaetes and oligochaetes also use similar mechanisms to regenerate after suffering damage. Two polychaete genera, Chaetopterus and Dodecaceria, can regenerate from a single segment, and others can regenerate even if their heads are removed.[7][28] Annelids are the most complex animals that can regenerate after such severe damage.[31] On the other hand leeches cannot regenerate.[30]
[edit] Sexual reproduction
Apical tuft (cilia)
Prototroch (cilia)
Stomach
Mouth
Metatroch (cilia)
Mesoderm
Anus
/// = cilia
Trochophore larva[32]
It is thought that annelids were originally animals with two separate sexes, which released ova and sperm into the water via their nephridia.[3] The fertilized eggs develop into trochophore larvae, which live as plankton.[33] Later they sink to the sea-floor and metamorphose into miniature adults: the part of the trochophore between the apical tuft and the prototroch becomes the prostomium (head); a small area round the trochophore's anus becomes the pygidium (tail-piece); a narrow band immediately in front of that becomes the growth zone that produces new segments; and the rest of the trochophore becomes the peristomium (the segment that contains the mouth).[3]
However, the lifecycles of most living polychaetes, which are almost all marine animals, are unknown, and only about 25% of the 300+ species whose lifecycles are known follow this pattern. About 14% use a similar external fertilization but produce yolk-rich eggs, which reduce the time the larva needs to spend among the plankton, or eggs from which miniature adults emerge rather than larvae. The rest care for the fertilized eggs until they hatch – some by producing jelly-covered masses of eggs which they tend, some by attaching the eggs to their bodies and a few species by keeping the eggs within their bodies until they hatch. These species use a variety of methods for sperm transfer; for example, in some the females collect sperm released into the water, while in others the males have penes that inject sperm into the female.[33] There is no guarantee that this is a representative sample of polychaetes' reproductive patterns, and it simply reflects scientists' current knowledge.[33]
Some polychaetes breed only once in their lives, while others breed almost continuously or through several breeding seasons. While most polychaetes remain of one sex all their lives, a significant percentage of species are full hermaphrodites or change sex during their lives. Most polychaetes whose reproduction has been studied lack permanent gonads, and it is uncertain how they produce ova and sperm. In a few species the rear of the body splits off and becomes a separate individual that lives just long enough to swim to a suitable environment, usually near the surface, and spawn.[33]
Most mature clitellates (the group that includes earthworms and leeches) are full hermaphrodites, although in a few leech species younger adults function as males and become female at maturity. All have well-developed gonads, and all copulate. Earthworms store their partners' sperm in spermathecae ("sperm stores") and then the clitellum produces a cocoon that collects ova from the ovaries and then sperm from the spermathecae. Fertilization and development of earthworm eggs takes place in the cocoon. Leeches' eggs are fertilized in the ovaries, and then transferred to the cocoon. In all clitellates the cocoon also either produces yolk when the eggs are fertilized or nutrients while they are developing. All clitellates hatch as miniature adults rather than larvae.[33]
[edit] Ecological significance
Charles Darwin's book The Formation of Vegetable Mould through the Action of Worms (1881) presented the first scientific analysis of earthworms' contributions to soil fertility.[34] Some burrow while others live entirely on the surface, generally in moist leaf litter. The burrowers loosen the soil so that oxygen and water can penetrate it, and both surface and burrowing worms help to produce soil by mixing organic and mineral matter, by accelerating the decomposition of organic matter and thus making it more quickly available to other organisms, and by concentrating minerals and converting them to forms that plants can use more easily.[35][36] Earthworms are also important prey for birds ranging in size from robins to storks, and for mammals ranging from shrews to badgers, and in some cases conserving earthworms may be essential for conserving endangered birds.[37]
Marine annelids may account for over one-third of bottom-dwelling animal species round coral reefs and in tidal zones.[34] Burrowing species increase the penetration of water and oxygen and water into the sea-floor sediment, which encourages the growth of populations of bacteria and small animals alongside their burrows.[38]
Although blood-sucking leeches do little direct harm to their victims, some transmit flagellates that can be very dangerous to their hosts. Some small tube-dwelling oligochaetes transmit myxosporean parasites that cause whirling disease in fish.[34]
[edit] Interaction with humans
Earthworms make a significant contribution to soil fertility.[34] The rear end of the Palolo worm, a marine polychaete that tunnels through coral, detaches in order to spawn at the surface, and the people of Samoa regard these spawning modules as a delicacy.[34] Anglers sometimes find that worms are more effective bait than artificial flies, and worms can be kept for several days in a tin lined with damp moss.[39] Ragworms are commercially important as bait and as food sources for aquaculture, and there have been proposals to farm them in order to reduce over-fishing of their natural populations.[38] Some marine polychaetes' predation on molluscs causes serious losses to fishery and aquaculture operations.[34]
Scientists study aquatic annelids to monitor the oxygen content, salinity and pollution levels in fresh and marine water.[34]
Accounts of the use of leeches for the medically dubious practise of blood-letting have come from China around 30 AD, India around 200 AD, ancient Rome around 50 AD and later throughout Europe. In the 19th century medical demand for leeches was so high that some areas' stocks were exhausted and other regions imposed restrictions or bans on exports, and Hirudo medicinalis is treated as an endangered species by both IUCN and CITES. More recently leeches have been used to assist in microsurgery, and their saliva has provided anti-inflammatory compounds and several important anticoagulants, one of which also prevents tumors from spreading.[34]
Ragworms' jaws are strong but much lighter than the hard parts of many other organisms, which are biomineralized with calcium salts. These advantages have attracted the attention of engineers. Investigations showed that ragworm jaws are made of unusual proteins that bind strongly to zinc.[40]
[edit] Evolutionary history
[edit] Fossil record
Since annelids are soft-bodied, their fossils are rare.[41] Polychaetes' fossil record consists mainly of the jaws that some species had and the mineralized tubes that some secreted.[42] Some Ediacaran fossils such as Dickinsonia in some ways resemble polychaetes, but the similarities are too vague for these fossils to be classified with confidence.[43] The small shelly fossil Cloudina, from 549 to 542 million years ago, has been classified by some authors as an annelid, but by others as a cnidarian (i.e. in the phylum to which jellyfish and sea anemones belong).[44] Until 2008 the earliest fossils widely accepted as annelids were the polychaetes Canadia and Burgessochaeta, both from Canada's Burgess Shale, formed about 505 million years ago in the early Cambrian.[45] Myoscolex, found in Australia and a little older than the Burgess Shale, was possibly an annelid. However, it lacks some typical annelid features and has features which are not usually found in annelids and some of which are associated with other phyla.[45] Then Simon Conway Morris and John Peel reported Phragmochaeta from Sirius Passet, about 518 million years old, and concluded that it was the oldest annelid known to date.[43] There has been vigorous debate about whether the Burgess Shale fossil Wiwaxia was a mollusc or an annelid.[45] Polychaetes diversified in the early Ordovician, about 488 to 474 million years ago. By the end of the Carboniferous, about 299 million years ago, fossils of most of the modern mobile polychaete groups had appeared.[45] Many fossil tubes look like those made by modern sessile polychaetes, but the first tubes clearly produced by polychaetes date from the Jurassic, less than 199 million years ago.[45]
The earliest good evidence for oligochaetes occurs in the Tertiary period, which began 65 million years ago, and it has been suggested that these animals evolved around the same time as flowering plants in the early Cretaceous, from 130 to 90 million years ago.[46] A trace fossil consisting of a convoluted burrow partly filled with small fecal pellets may be evidence that earthworms were present in the early Triassic period from 251 to 245 million years ago.[46][47] Body fossils going back to the mid Ordovician, from 472 to 461 million years ago, have been tentatively classified as oligochaetes, but these identifications are uncertain and some have been disputed.[46][48]
[edit] Family tree
Annelida
some "Scolecida" and "Aciculata"
some "Canalipalpata"
Sipuncula, previously a separate phylum
Clitellata
some "Oligochaeta"
Hirudines (leeches)
some "Oligochaeta"
some "Oligochaeta"
Aeolosomatidae[49]
some "Scolecida" and "Canalipalpata"
some "Scolecida"
Echiura, previously a separate phylum
some "Scolecida"
some "Canalipalpata"
Siblonginidae, previously phylum Pogonophora
some "Canalipalpata"
some "Scolecida", "Canalipalpata" and "Aciculata"
Annelid groups and phyla incorporated into Annelida (2007; simplified).[5]
Highlights major changes to traditional classifications.
Traditionally the annelids have been divided into two major groups, the polychaetes and clitellates. In turn the clitellates were divided into oligochaetes, which include earthworms, and hirudinomorphs, whose best-known members are leeches.[3] For many years there was no clear arrangement of the approximately 80 polychaete families into higher-level groups.[5] In 1997 Greg Rouse and Kristian Fauchald attempted a "first heuristic step in terms of bringing polychaete systematics to an acceptable level of rigour", based on anatomical structures, and divided polychaetes into:[50]
* Scolecida, less than 1,000 burrowing species that look rather like earthworms.[51]
* Palpata, the great majority of polychaetes, divided into:
o Canalipalpata, which are distinguished by having long grooved palps that they use for feeding, and most of which live in tubes.[51]
o Aciculata, the most active polychaetes, which have parapodia reinforced by internal spines (aciculae).[51]
Also in 1997 Damhnait McHugh, using molecular phylogenetics to compare similarities and differences in one gene, presented a very different view, in which: the clitellates were an off-shoot of one branch of the polychaete family tree; the pogonophorans and echiurans, which for a few decades had been regarded as a separate phyla, were placed on other branches of the polychaete tree.[52] Subsequent molecular phylogenetics analyses on a similar scale presented similar conclusions.[53]
In 2007 Torsten Struck and colleagues compared 3 genes in 81 taxa, of which 9 were outgroups,[5] in other words not considered closely related to annelids but included to give an indication of where the organisms under study are placed on the larger tree of life.[54] For a cross-check the study used an analysis of 11 genes (including the original 3) in 10 taxa. This analysis agreed that clitellates, pogonophorans and echiurans were on various branches of the polychaete family tree. It also concluded that the classification of polychaetes into Scolecida, Canalipalpata and Aciculata was useless, as the members of these alleged groups were scattered all over the family tree derived from comparing the 81 taxa. In addition, it also placed sipunculans, generally regarded at the time as a separate phylum, on another branch of the polychaete tree, and concluded that leeches were a sub-group of oligochaetes rather than their sister-group among the clitellates.[5] Rouse accepted the analyses based on molecular phylogenetics,[7] and their main conclusions are now the scientific consensus, although the details of the annelid family tree remain uncertain.[6]
In addition to re-writing the classification of annelids and 3 previously independent phyla, the molecular phylogenetics analyses undermine the emphasis that decades of previous writings placed on the importance of segmentation in the classification of invertebrates. Polychaetes, which these analyses found to be the parent group, have completely segmented bodies, while polychaetes' echiurans and sipunculan offshoots are not segmented and pogonophores are segmented only in the rear parts of their bodies. It now seems that segmentation can appear and disappear much more easily in the course of evolution than was previously thought.[5][52] The 2007 study also noted that the ladder-like nervous system, which is associated with segmentation, is less universal than previously thought in both annelids and arthropods.[5]
Bilateria
Acoelomorpha (Acoela and Nemertodermatida)
Deuterostomia (Echinoderms, chordates, etc.)
Protostomia
Ecdysozoa
(Arthropods, nematodes, priapulids, etc.)
Lophotrochozoa
Bryozoa
Annelida
Sipuncula
Mollusca
Phoronida and Brachiopoda
Nemertea
Dicyemida
Myzostomida
Platyzoa
Other Platyzoa
Gastrotricha
Platyhelminthes
Relationships of Annelids to other Bilateria:[53]
(Analysis produced in 2004, before Sipuncula were merged into Annelida in 2007[5])
Annelids are members of the protostomes, one of the two major superphyla of bilaterian animals - the other is the deuterostomes, which includes vertebrates.[53] Within the protostomes, annelids used to be grouped with arthropods under the super-group Articulata ("jointed animals"), as segmentation is obvious in most members of both phyla. However, the genes that drive segmentation in arthropods do not appear to do the same in annelids. Arthropods and annelids both have close relatives that are unsegmented. It is at least as easy to assume that they evolved segmented bodies independently as it is to assume that the ancestral protostome or bilaterian was segmented and that segmentation disappeared in many descendant phyla.[53] The current view is that annelids are grouped with molluscs, brachiopods and several other phyla that have lophophores (fan-like feeding structures) and/or trochophore larvae as members of Lophotrochozoa.[55] Bryzoa may be the most basal phylum (the one that first became distinctive) within the Lophotrochozoa, and the relationships between the other members are not yet known.[53] Arthropods are now regarded as members of the Ecdysozoa ("animals that molt"), along with some phyla that are unsegmented.[53][56]
The "Lophotrochozoa" hypothesis is also supported by the fact that many phyla within this group, including annelids, molluscs, nemerteans and flatworms, follow a similar pattern in the fertilized egg's development. When their cells divide after the 4-cell stage, descendants of these 4 cells form a spiral pattern. In these phyla the "fates" of the embryo's cells, in other words the roles their descendants will play in the adult animal, are the same and can be predicted from a very early stage.[57] Hence this development pattern is often described as "spiral determinate cleavage".[58]
[edit] References
1. ^ Dictionary.com Unabridged: Annelida. Based on the Random House Dictionary, Random House, Inc., 2009.
2. ^ a b c d e Rouse, G.W. (2002). "Annelida (Segmented Worms)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.. doi:10.1038/npg.els.0001599.
3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 414–420. ISBN 0030259827.
4. ^ Lavelle, P. (July 1996). "Diversity of Soil Fauna and Ecosystem Function". Siobgy Intemational 33. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_45-46/010008126.pdf. Retrieved 2009-04-20.
5. ^ a b c d e f g h i Struck, T.H.; Schult, N., Kusen, T., Hickman, E., Bleidorn. C., McHugh, D., and Halanych, K.M. (2007). "Annelid phylogeny and the status of Sipuncula and Echiura". BMC Evolutionary Biology 7 (57): 57. doi:10.1186/1471-2148-7-57.
6. ^ a b Hutchings, P. (2007). "Book Review: Reproductive Biology and Phylogeny of Annelida". Integrative and Comparative Biology 47: 788. doi:10.1093/icb/icm008.
7. ^ a b c d e f g h i j k l Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 176–179. ISBN 0195513681.
8. ^ a b c d e Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 179–183. ISBN 0195513681.
9. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. p. 459. ISBN 0030259827.
10. ^ a b c d Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 471–482. ISBN 0030259827.
11. ^ a b c Halanych, K.M.; Dahlgren, T.G., and McHugh, D. (2002). "Unsegmented Annelids? Possible Origins of Four Lophotrochozoan Worm Taxa". Integrative and Comparative Biology 42 (3): 678–684. doi:10.1093/icb/42.3.678.
12. ^ McHugh, D. (July 1997). "Molecular evidence that echiurans and pogonophorans are derived annelids". Proceedings of the National Academy of Sciences of the United States of America 94 (15): 8006–8009. PMID 9223304. PMC 21546. http://www.pnas.org/content/94/15/8006.full. Retrieved 2009-04-02.
13. ^ a b c d e f g h i j k l m n o Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 183–196. ISBN 0195513681.
14. ^ Cutler, B. (August, 1980). "Arthropod cuticle features and arthropod monophyly". Cellular and Molecular Life Sciences 36 (8): 953. doi:10.1007/BF01953812. http://www.springerlink.com/content/m880k13r6232q1m8/. Retrieved 2008-09-25.
15. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Arthropoda". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 523–524. ISBN 0030259827.
16. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Echiura and Sipuncula". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 490–495. ISBN 0030259827.
17. ^ Anderson, D.T., (1998). "The Annelida and their close relatives". in Anderson, D.T.,. Invertebrate Zoology. Oxford University Press. pp. 183–196. ISBN 0195513681.
18. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Nemertea". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 271–282. ISBN 0030259827.
19. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Arthropoda". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 518–521. ISBN 0030259827.
20. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Onychophora and Tardigrada". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 505–510. ISBN 0030259827.
21. ^ Paxton, H. (June 2005). "Molting polychaete jaws—ecdysozoans are not the only molting animals". Evolution & Development 7 (4): 337–340. doi:10.1111/j.1525-142X.2005.05039.x.
22. ^ a b c Nielsen, C. (September 2003,). "Proposing a solution to the Articulata–Ecdysozoa controversy". Zoologica Scripta 32 (5): 475–482. doi:10.1046/j.1463-6409.2003.00122.x. http://www.museunacional.ufrj.br/mndi/Aracnologia/pdfliteratura/Nielsen%202003%20articulata%20vs%20ecdiso.pdf. Retrieved 2009-03-11.
23. ^ Jenner, R.A. (2006). "Challenging received wisdoms: Some contributions of the new microscopy to the new animal phylogeny". Integrative and Comparative Biology 46 (2): 93–103. doi:10.1093/icb/icj014.
24. ^ a b c d Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 425–429. ISBN 0030259827.
25. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Metazoa". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 103–104. ISBN 0030259827.
26. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 423–425. ISBN 0030259827.
27. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Bilateria". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 196–224. ISBN 0030259827.
28. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 434–441. ISBN 0030259827.
29. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 466–469. ISBN 0030259827.
30. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 477–478. ISBN 0030259827.
31. ^ Hickman, Cleveland; Roberts L. Keen S. Larson A. Eisenhour D (2007). Animal Diversity (4 th ed.). New York: Mc Graw Hill. p. 204. ISBN 978-0-07-252844-2.
32. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Mollusca". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 290-291. ISBN 0030259827.
33. ^ a b c d e Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 196–202. ISBN 0195513681.
34. ^ a b c d e f g h Siddall, M.E.; Borda, E., and Rouse, G.W. (2004). "Towards a tree of life for Annelida". in Cracraft, J., and Donoghue, M.J.. Assembling the tree of life. Oxford University Press US. pp. 237–248. ISBN 0195172345. http://books.google.co.uk/books?id=6lXTP0YU6_kC&pg=PA237&dq=annelid+food+eat&lr=#PPA237,M1. Retrieved 2009-04-02.
35. ^ New, T.R. (2005). Invertebrate conservation and agricultural ecosystems. Cambridge University Press. pp. 44–46. ISBN 0521532019. http://books.google.co.uk/books?id=bwqGf_JK3HcC&pg=PA44&dq=annelid+ecosystem#PPA45,M1. Retrieved 2009-04-02.
36. ^ Nancarrow, L.; Taylor, J.H. (1998). The worm book. Ten Speed Press. pp. 2–6. ISBN 0898159946. http://books.google.co.uk/books?id=U9uQVXCzmGcC&pg=PA139&dq=annelid+ecosystem#PPA6,M1. Retrieved 2009-04-02.
37. ^ Edwards, C.A.; Bohlen, P.J. (1996). "Earthworm ecology: communities". Biology and ecology of arthworms. Springer. pp. 124–126. ISBN 0412561603. http://books.google.co.uk/books?hl=en&lr=&id=ad4rDwD_GhsC&oi=fnd&pg=PT7&dq=earliest+oligochaete+clitellate+fossil+&ots=38d6tIYuu-&sig=IYCachJZIxdo0tZqe5YN5yCbjJ4#PPA40,M1. Retrieved 2009-04-12.
38. ^ a b Scaps, P. (February 2002). "A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor". Hydrobiologia 470 (1-3): 203–218. doi:10.1023/A:1015681605656.
39. ^ Sell, F.E. (re-published 2008). "The humble worm – with a difference". Practical Fresh Water Fishing. Read Books. pp. 14–15. ISBN 1443761575. http://books.google.co.uk/books?id=t_8tfWmRmmQC&pg=PA14&dq=worm+fishing+angler+bait&lr=#PPA3,M1. Retrieved 2009-04-02.
40. ^ "Rags to riches". The Economist. July 2008. http://www.economist.com/science/displaystory.cfm?story_id=11785227&CFID=14891129&CFTOKEN=52298400. Retrieved 2009-04-20.
41. ^ Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. p. 202. ISBN 0195513681.
42. ^ Briggs, D.E.G.; Kear, A.J. (1993). "Decay and preservation of polychaetes; taphonomic thresholds in soft-bodied organisms". Paleobiology 19 (1): 107–135. http://paleobiol.geoscienceworld.org/cgi/content/abstract/19/1/107. Retrieved 2009-04-12.
43. ^ a b Conway Morris, S.; Peel, J.S. (2008). "The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland". Acta Palaeontologica Polonica 53 (1): 137–148. http://www.app.pan.pl/archive/published/app53/app53-137.pdf. Retrieved 2009-04-12.
44. ^ Miller, A.J. (unpublished; produced in 2004). "A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications". http://ajm.pioneeringprojects.org/files/CloudinaPaper_Final.pdf. Retrieved 2009-04-12.
45. ^ a b c d e Dzik, J. (2004). "Anatomy and relationships of the Early Cambrian worm Myoscolex". Zoologica Scripta 33 (1): 57–69. doi:10.1111/j.1463-6409.2004.00136.x.
46. ^ a b c Humphreys, G.S. (2003). "Evolution of terrestrial burrowing invertebrates". in Roach, I.C.. Advances in Regolith. CRC LEME. pp. 211–215. ISBN 0731552210. http://crcleme.org.au/Pubs/Advancesinregolith/Humphreys.pdf. Retrieved 2009-04-13.
47. ^ Retallack, G.J. (1997). "Palaeosols in the upper Narrabeen Group of New South Wales as evidence of Early Triassic palaeoenvironments without exact modern analogues". Australian Journal of Earth Sciences 44: 185–201. doi:10.1080/08120099708728303. http://www.uoregon.edu/~gregr/Papers/new%20south%20wales.pdf. Retrieved 2009-04-13.
48. ^ Conway Morris, S.; Pickerill, R.K. and Harland, T.L. (1982). "A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms". Canadian Journal of Earth Sciences 19: 2150–2157. doi:10.1139/e82-189 (inactive 2010-01-05). http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjes&volume=19&year=0&issue=11&msno=e82-189. Retrieved 2009-04-13.
49. ^ A group of worms classified by some as polychaetes and by others as clitellates, see Rouse & Fauchald (1997) "Cladistics and polychaetes"
50. ^ Rouse, G.W.; Fauchald, K. (1997). "Cladistics and polychaetes". Zoologica Scripta 26 (2): 139–204. doi:10.1111/j.1463-6409.1997.tb00412.x.
51. ^ a b c Rouse, G.W.; Pleijel, F. and McHugh, D. (August 2002). "Annelida. Annelida. Segmented worms: bristleworms, ragworms, earthworms, leeches and their allies". The Tree of Life Web Project. Tree of Life Project. http://tolweb.org/Annelida. Retrieved 2009-04-13.
52. ^ a b McHugh, D. (1997). "Molecular evidence that echiurans and pogonophorans are derived annelids". Proceedings of the National Academy of Sciences of the United States of America 94 (15): 8006–8009. doi:10.1073/pnas.94.15.8006. PMID 9223304. PMC 21546. http://www.pnas.org/content/94/15/8006.long. Retrieved 2009-04-13.
53. ^ a b c d e f Halanych, K.M.. (2004). "The new view of animal phylogeny". Annual Review of Ecology, Evolution, and Systematics 35: 229–256. doi:10.1146/annurev.ecolsys.35.112202.130124. http://www-fourier.ujf-grenoble.fr/~dpiau/cdem/130124b.pdf. Retrieved 21009-04-17.
54. ^ "Reading trees: A quick review". University of California Museum of Paleontology. http://evolution.berkeley.edu/evolibrary/article/phylogenetics_02. Retrieved 2009-04-13.
55. ^ Dunn et al., CW; Hejnol, A; Matus, DQ; Pang, K; Browne, WE; Smith, SA; Seaver, E; Rouse, GW et al. (2008). "Broad phylogenomic sampling improves resolution of the animal tree of life". Nature 452 (7188): 745–749. doi:10.1038/nature06614. PMID 18322464. http://www.nature.com/nature/journal/v452/n7188/abs/nature06614.html.
56. ^ Aguinaldo, A. M. A.; J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff, & J. A. Lake (1997). "Evidence for a clade of nematodes, arthropods and other moulting animals". Nature 387 (6632): 489–493. doi:10.1038/387489a0. PMID 9168109.
57. ^ Shankland, M.; Seaver, E.C. (April 2000). "Evolution of the bilaterian body plan: What have we learned from annelids?". Proceedings of the National Academy of Sciences of the United States of America 97 (9): 4434–4437. doi:10.1073/pnas.97.9.4434. PMID 10781038. PMC 34316. http://www.pnas.org/content/97/9/4434.full. Retrieved 2009-04-20.
58. ^ Pearson, R.D. (2003). "The Determined Embryo". in Hall, B.K., Pearson, R.D., and Müller, G.B.. Environment, Development, and Evolution. MIT Press. pp. 67–69. ISBN 0-262-08319-1. http://books.google.co.uk/books?hl=en&lr=&id=65Bdfy-SOyMC&oi=fnd&pg=PA67&dq=spiral+determinate+cleavage&ots=dOC4vZpDmI&sig=g5xIGtU4gEBUxQs0zKYXBp01eqM. Retrieved 2009-07-03.
[edit] Further reading
* Dales, R. P. 1967. Annelids, 2nd edition. London: Hutchinson University Library.
* "Annelid Fossils" (Web page). The Virtual Fossil Museum. 2006. http://www.fossilmuseum.net/fossils/Annelid-Fossils.htm. Retrieved May 20, 2006. – Descriptions and images of annelid fossils from Mazon Creek and the Utah House Range.
Search Wikimedia Commons Wikimedia Commons has media related to: Annelida
Search Wikispecies Wikispecies has information related to: Annelida
Search Wikibooks The Wikibook Dichotomous Key has a page on the topic of
Annelida
[edit] External links
* Polychaete Larva - Guide to the Marine Zooplankton of south eastern Australia, Tasmanian Aquaculture & Fisheries Institute
* Malaysia Medicinal Leeches
[hide]
v • d • e
Extant phyla of kingdom Animalia by subkingdom
Parazoa
Porifera (Calcarea, Demospongiae, Hexactinellida) · Placozoa (Trichoplax)
Mesozoa
Orthonectida · Rhombozoa
Eumetazoa
Radiata
Ctenophora · Cnidaria (Anthozoa, Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Myxozoa)
Bilateria
Protostomia
Ecdysozoa
Cycloneuralia: Scalidophora (Kinorhyncha, Loricifera, Priapulida) · Nematoida (Nematoda, Nematomorpha)
Panarthropoda: Onychophora · Tardigrada · Arthropoda
Spiralia
Platyzoa
Platyhelminthes · Gastrotricha
Gnathifera: Rotifera · Acanthocephala · Gnathostomulida · Micrognathozoa · Cycliophora
Lophotrochozoa
Trochozoa (Sipuncula, Nemertea, Mollusca, Annelida, Echiura)
Lophophorata (Bryozoa, Entoprocta, Phoronida, Brachiopoda)
Deuterostomia
Ambulacraria
Hemichordata · Echinodermata · Xenoturbellida
Chordata
Craniata (Vertebrata, Hyperotreti) · Cephalochordata · Tunicata
Basal/disputed
Acoelomorpha (Acoela, Nemertodermatida) · Chaetognatha
Retrieved from "http://en.wikipedia.org/wiki/Annelid"
Categories: Annelids
Hidden categories: Pages with DOIs broken since 2010 | Wikipedia indefinitely move-protected pages | Articles with 'species' microformats
Views
* Article
* Discussion
* Edit this page
* History
Personal tools
* Try Beta
* Log in / create account
Navigation
* Main page
* Contents
* Featured content
* Current events
* Random article
Search
Interaction
* About Wikipedia
* Community portal
* Recent changes
* Contact Wikipedia
* Donate to Wikipedia
* Help
Toolbox
* What links here
* Related changes
* Upload file
* Special pages
* Printable version
* Permanent link
* Cite this page
Languages
* العربية
* Azərbaycan
* বাংলা
* Bân-lâm-gú
* Български
* Català
* Česky
* Cymraeg
* Dansk
* Deutsch
* Eesti
* Ελληνικά
* Español
* Esperanto
* Euskara
* Føroyskt
* Français
* Galego
* 한국어
* Hrvatski
* Bahasa Indonesia
* Interlingua
* Italiano
* ქართული
* Latina
* Latviešu
* Lietuvių
* Magyar
* Македонски
* Nederlands
* 日本語
* Norsk (bokmål)
* Norsk (nynorsk)
* Occitan
* Polski
* Português
* Română
* Runa Simi
* Русский
* Simple English
* Slovenčina
* Slovenščina
* Српски / Srpski
* Srpskohrvatski / Српскохрватски
* Suomi
* Svenska
* తెలుగు
* ไทย
* Türkçe
* Українська
* Tiếng Việt
* 中文
Powered by MediaWiki
Wikimedia Foundation
* This page was last modified on 31 March 2010 at 11:16.
* Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
* Contact us
* Privacy policy
* About Wikipedia
* Disclaimers
Scholarship applications for Wikimania 2010 are now open. Apply now!
[Hide]
[Help us with translations!]
Annelid
From Wikipedia, the free encyclopedia
(Redirected from Annelida)
Jump to: navigation, search
Annelids
Fossil range: 518–0 Ma
PreЄ
Є
O
S
D
C
P
T
J
K
Pg
N
Cambrian - Recent
Glycera sp.
Scientific classification
Kingdom: Animalia
Superphylum: Lophotrochozoa
Phylum: Annelida
Lamarck, 1809
Classes and subclasses
Class Polychaeta (paraphyletic?)
Class Clitellata (see below)
Oligochaeta - earthworms, etc.
Branchiobdellida
Hirudinea - leeches
Class Myzostomida
Class Archiannelida (polyphyletic)
The annelids ( also called Ringed Worm ), collectively called Annelida (from French annelés "ringed ones", ultimately from Latin anellus "little ring"[1]), are a large phylum of segmented worms, with over 17,000 modern species including ragworms, earthworms and leeches. They are found in marine environments from tidal zones to hydrothermal vents, in freshwater, and in moist terrestrial environments. Although most textbooks still use the traditional division into polychaetes (almost all marine), oligochaetes (which include earthworms) and leech-like species, research since 1997 has radically changed this scheme, viewing leeches as a sub-group of oligochaetes and oligochaetes as a sub-group of polychaetes. In addition, the Pogonophora, Echiura and Sipuncula, previously regarded as separate phyla, are now regarded as sub-groups of polychaetes. Annelids are considered members of the Lophotrochozoa, a "super-phylum" of protostomes that also includes molluscs, brachiopods, flatworms and nemerteans.
The basic annelid form consists of multiple segments, each of which has the same sets of organs and, in most polychaetes, a pair of parapodia that many species use for locomotion. Septa separate the segments of many species, but are poorly-defined or absent in some, and Echiura and Sipuncula show no obvious signs of segmentation. In species with well-developed septa, the blood circulates entirely within blood vessels, and the vessels in segments near the front ends of these species are often built up with muscles to act as hearts. The septa of these species also enable them to change the shapes of individual segments, which facilitates movement by peristalsis ("ripples" that pass along the body) or by undulations that improve the effectiveness of the parapodia. In species with incomplete septa or none, the blood circulates through the main body cavity without any kind of pump, and there is a wide range of locomotory techniques – some burrowing species turn their pharynges inside out to drag themselves through the sediment.
Although many species can reproduce asexually and use similar mechanisms to regenerate after severe injuries, sexual reproduction is the normal method in species whose reproduction has been studied. The minority of living polychaetes whose reproduction and lifecycles are known produce trochophore larvae, which live as plankton and then sink and metamorphose into miniature adults. Oligochaetes are full hermaphrodites and produce a ring-like cocoon round their bodies, in which the eggs and hatchlings are nourished until they are ready to emerge.
Earthworms support terrestrial food chains both as prey and by aerating and enriching soil. The burrowing of marine polychaetes, which may constitute up to a third of all species in near-shore environments, encourages the development of ecosystems by enabling water and oxygen to penetrate the sea floor. In addition to improving soil fertility, annelids serve humans as food and as bait. Scientists observe annelids to monitor the quality of marine and fresh water. Although blood-letting is no longer in favor with doctors, some leech species are regarded as endangered species because they have been over-harvested for this purpose in the last few centuries. Ragworms' jaws are now being studied by engineers as they offer an exceptional combination of lightness and strength.
Since annelids are soft-bodied, their fossils are rare – mostly jaws and the mineralized tubes that some of the species secreted. Although some late Ediacaran fossils may represent annelids, the oldest known fossil that is identified with confidence comes from about 518 million years ago in the early Cambrian period. Fossils of most modern mobile polychaete groups appeared by the end of the Carboniferous, about 299 million years ago. Scientists disagree about whether some body fossils from the mid Ordovician, about 472 to 461 million years ago, are the remains of oligochaetes, and the earliest certain fossils of the group appear in the Tertiary period, which began 65 million years ago.
Contents
[hide]
* 1 Classification and diversity
* 2 Distinguishing features
* 3 Description
o 3.1 Segmentation
o 3.2 Body wall, chetae and parapodia
o 3.3 Nervous system and senses
o 3.4 Coelom, locomotion and circulatory system
o 3.5 Respiration
o 3.6 Feeding and excretion
o 3.7 Reproduction and life cycle
+ 3.7.1 Asexual reproduction
+ 3.7.2 Sexual reproduction
* 4 Ecological significance
* 5 Interaction with humans
* 6 Evolutionary history
o 6.1 Fossil record
o 6.2 Family tree
* 7 References
* 8 Further reading
* 9 External links
[edit] Classification and diversity
There are over 17,000 living annelid species,[2] ranging in size from microscopic to the Australian giant Gippsland earthworm, which can grow up to 3 metres (9.8 ft) long.[3][4] Although research since 1997 has radically changed scientists' views about the evolutionary family tree of the annelids,[5][6] most textbooks use the traditional classification into the following sub-groups:[3][7]
* Polychaetes (about 12,000 species[2]). As their name suggests, they have multiple chetae ("hairs") per segment. Polychaetes have parapodia that function as limbs, and nuchal organs ("nuchal" means "on the neck") that are thought to be chemosensors.[3] Most are marine animals, although a few species live in fresh water and even fewer on land.[8]
An earthworm's clitellum
* Clitellates (about 5,000 species[2]). These have few or no chetae per segment, and no nuchal organs or parapodia. However, they have a unique reproductive organ, the ring-shaped clitellum ("pack saddle") round their bodies, which produces a cocoon that stores and nourishes fertilized eggs until they hatch.[7][9] The clitellates are sub-divided into:[3]
o Oligochaetes ("with few hairs"), which includes earthworms. Oligochaetes have a sticky pad in the roof of the mouth.[3] Most are burrowers that feed on wholly or partly decomposed organic materials.[8]
o Hirudinea, whose name means "leech-shaped" and whose best known members are leeches.[3] Marine species are mostly blood-sucking parasites, mainly on fish, while most freshwater species are predators.[8] They have suckers at both ends of their bodies, and use these to move rather like inchworms.[10]
The Archiannelida, minute annelids that live in the spaces between grains of sediment, were treated as a separate class because of their simple body structure, but are now regarded as polychaetes.[7] Some other groups of animals have been classified in various ways, but are now widely regarded as annelids:
* Pogonophora / Siboglinidae were first discovered in 1914, and their lack of a recognizable gut made it difficult to classify them. They have been classified as a separate phylum, Pogonophora, or as two phyla, Pogonophora and Vestimentifera. More recently they have been re-classified as a family, Siboglinidae, within the polychaetes.[8][11]
* The Echiura have a checkered taxonomic history: in the 19th century they were assigned to the phylum "Gephyrea", which is now empty as its members have been assigned to other phyla; the Echiura were next regarded as annelids until the 1940s, when they were classified as a phylum in their own right; but a molecular phylogenetics analysis in 1997 concluded that Echiurans are annelids.[2][11][12]
* Myzostomida live on crinoids and other echinoderms, mainly as parasites. In the past they have been regarded as close relatives of the trematode flatworms or of the tardigrades, but in 1998 it was suggested that they are a sub-group of polychaetes.[8] However, another analysis in 2002 suggested that myzostomids are more closely related to flatworms or to rotifers and acanthocephales.[11]
[edit] Distinguishing features
No single feature distinguishes Annelids from other invertebrate phyla, but they have a distinctive combination of features. Their bodies are long, with segments that are divided externally by shallow ring-like constrictions called annuli and internally by septa ("partitions") at the same points, although in some species the septa are incomplete and in a few cases missing. Most of the segments contain the same sets of organs, although sharing a common gut, circulatory system and nervous system makes them inter-dependent.[3][7] Their bodies are covered by a cuticle (outer covering) that does not contain cells but is secreted by cells in the skin underneath, is made of tough but flexible collagen[3] and does not molt[13] – on the other hand arthropods' cuticles are made of the more rigid α-chitin,[3][14] and molt until the arthropods reach their full size.[15] Most annelids have closed circulatory systems, where the blood makes its entire circuit via blood vessels.[13]
Summary of distinguishing features Annelida[3] Recently merged into Annelida[5] Closely-related Similar-looking phyla
Echiura[16] Sipuncula[17] Nemertea[18] Arthropoda[19] Onychophora[20]
External segmentation Yes no no Only in a few species Yes, except in mites no
Repetition of internal organs Yes no no Yes In primitive forms Yes
Septa between segments In most species no no No No No
Cuticle material collagen collagen collagen none α-chitin α-chitin
Molting Generally no;[13] but some polychaetes molt their jaws, and leeches molt their skins[21] no[22] no[22] no[22] Yes[15] Yes
Body cavity Coelom; but this is reduced or missing in many leeches and some small polychaetes[13] 2 coeloms, main and in proboscis 2 coeloms, main and in tentacles Coelom only in proboscis Hemocoel Hemocoel
Circulatory system Closed in most species Open outflow, return via branched vein Open Closed Open Open
[edit] Description
[edit] Segmentation
Prostomium
Peristomium
O Mouth
Growth zone
Pygidium
O Anus
Segments of an annelid[3][7]
Most of an annelid's body consists of segments that are practically identical, having the same sets of internal organs and external chaetae (Greek χαιτα, meaning "hair") and, in some species, appendages. However, the frontmost and rearmost sections are not regarded as true segments as they do not contain the standard sets of organs and do not develop in the same way as the true segments. The frontmost section, called the prostomium (Greek προ- meaning "in front of" and στομα meaning "mouth") contains the brain and sense organs, while the rearmost, called the pygidium (Greek πυγιδιον, meaning "little tail") contains the anus, generally on the underside. The first section behind the prostomium, called the peristomium (Greek περι- meaning "around" and στομα meaning "mouth"), is regarded by some zoologists as not a true segment, but in some polychaetes the peristomium has chetae and appendages like those of other segments.[3]
The segments develop one at a time from a growth zone just ahead of the pygidium, so that an annelid's youngest segment is just in front of the growth zone while the peristomium is the oldest. This pattern is called teloblastic growth.[3] Some groups of annelids, including all leeches,[10] have fixed maximum numbers of segments, while others add segments throughout their lives.[7]
The phylum's name is derived from the Latin word annelus, meaning "little ring".[2]
[edit] Body wall, chetae and parapodia
1 O Nephridiopore
2 Nephridium
3 Cuticle
4 Circular muscle
5 Longitudinal muscle
6 Peritoneum
7 Gut
8 Blood vessel
9 Nerve cord(s)
10 Coelom
Cross-section through a typical annelid[3][7]
Annelids' cuticles are made of collagen fibers, usually in layers that spiral in alternating directions so that the fibers cross each other. These are secreted by the one-cell deep epidermis (outermost skin layer). A few marine annelids that live in tubes lack cuticles, but their tubes have a similar structure, and mucus-secreting glands in the epidermis protect their skins.[3] Under the epidermis is the dermis, which is made of connective tissue, in other words a combination of cells and non-cellular materials such as collagen. Below this are two layers of muscles, which develop from the lining of the coelom (body cavity): circular muscles make a segment longer and slimmer when they contract, while under them are longitudinal muscles, usually four distinct strips,[13] whose contractions make the segment shorter and fatter.[3] Some annelids also have oblique internal muscles that connect the underside of the body to each side.[13]
The chetae ("hairs") of annelids project out from the epidermis to provide traction and other capabilities. The simplest are unjointed and form paired bundles near the top and bottom of each side of each segment. The parapodia ("limbs") of annelids that have them often bear more complex chetae at their tips – for example jointed, comb-like or hooked.[3] Chetae are made of moderately flexible β-chitin and are formed by follicles, each of which has a chaetoblast ("hair-forming") cell at the bottom and muscles that can extend or retract the cheta. The chetoblasts produce chetae by forming microvilli, fine hair-like extensions that increase the area available for secreting the cheta. When the cheta is complete, the microvilli withdraw into the chetoblast, leaving parallel tunnels that run almost the full length of the cheta.[3] Hence annelids' chetae are structurally different from the setae ("bristles") of arthropods, which are made of the more rigid α-chitin, have a single internal cavity, and are mounted on flexible joints in shallow pits in the cuticle.[3]
Nearly all polychaetes have parapodia that function as limbs, while other major annelid groups lack them. Parapodia are unjointed paired extensions of the body wall, and their muscles are derived from the circular muscles of the body. They are often supported internally by one or more large, thick chetae. The parapodia of burrowing and tube-dwelling polychaetes are often just ridges whose tips bear hooked chetae. In active crawlers and swimmers the parapodia are often divided into large upper and lower paddles on a very short trunk, and the paddles are generally fringed with chetae and sometimes with cirri (fused bundles of cilia) and gills.[13]
[edit] Nervous system and senses
The brain generally forms a ring round the pharynx (throat), consisting of a pair of ganglia (local control centers) above and in front of the pharynx, linked by nerve cords either side of the pharynx to another pair of ganglia just below and behind it.[3] The brains of polychaetes are generally in the prostomium, while those of clitellates are in the peristomium or sometimes the first segment behind the peristomium.[23] In some very mobile and active polychaetes the brain is enlarged and more complex, with visible hindbrain, midbrain and forebrain sections.[13] The rest of the central nervous system is generally "ladder-like", consisting of a pair of nerve cords that run through the bottom part of the body and have in each segment paired ganglia linked by a transverse connection. From each segmental ganglion a branching system of local nerves runs into the body wall and then encircles the body.[3] However, in most polychaetes the two main nerve cords are fused, and in the tube-dwelling genus Owenia the single nerve chord has no ganglia and is located in the epidermis.[7][24]
As in arthropods, each muscle fiber (cell) is controlled by more than one neuron, and the speed and power of the fiber's contractions depends on the combined effects of all its neurons. Vertebrates have a different system, in which one neuron controls a group of muscle fibers.[3] Most annelids' longitudinal nerve trunks include giant axons (the output signal lines of nerve cells). Their large diameter decreases their resistance, which allows them to transmit signals exceptionally fast. This enables these worms to withdraw rapidly from danger by shortening their bodies. Experiments have shown that cutting the giant axons prevents this escape response but does not affect normal movement.[3]
The sensors are primarily single cells that detect light, chemicals, pressure waves and contact, and are present on the head, appendages (if any) and other parts of the body.[3] Nuchal ("on the neck") organs are paired, ciliated structures found only in polychaetes, and are thought to be chemosensors.[13] Some polychaetes also have various combinations of ocelli ("little eyes") that detect the direction from which light is coming and camera eyes or compound eyes that can probably form images.[24] The compound eyes probably evolved independently of arthropods' eyes.[13] Some tube-worms use ocelli widely spread over their bodies to detect the shadows of fish, so that they can quickly withraw into their tubes.[24] Some burrowing and tube-dwelling polychaetes have statocysts (tilt and balance sensors) that tell them which way is down.[24] A few polychaete genera have on the undersides of their heads palps that are used both in feeding and as "feelers", and some of these also have antennae that are structurally similar but probably are used mainly as "feelers".[13]
[edit] Coelom, locomotion and circulatory system
Most annelids have a pair of coeloms (body cavities) in each segment, separated from other segments by septa and from each other by vertical mesenteries. Each septum forms a sandwich with connective tissue in the middle and mesothelium (membrane that serves as a lining) from the preceding and following segments on either side. Each mesentery is similar except that the mesothelium is the lining of each of the pair of coeloms, and the blood vessels and, in polychaetes, the main nerve cords are embedded in it.[3] The mesothelium is made of modified epitheliomuscular cells,[3] in other words their bodies form part of the epithelium but their bases extend to form muscle fibers in the body wall.[25] The mesothelium may also form radial and circular muscles on the septa, and circular muscles around the blood vessels and gut. Parts of the mesothelium, especially on the outside of the gut, may also form chloragogen cells that perform similar functions to the livers of vertebrates: producing and storing glycogen and fat; producing the oxygen-carrier hemoglobin; breaking down proteins; and turning nitrogenous waste products into ammonia and urea to be excreted.[3]
Regenwurm.ogv
Play video
Peristalsis moves this "worm" to the right
Many annelids move by peristalsis (waves of contraction and expansion that sweep along the body),[3] or flex the body while using parapodia to crawl or swim.[26] In these animals the septa enable the circular and longitudinal muscles to change the shape of individual segments, by making each segment a separate fluid-filled "balloon".[3] However, the septa are often incomplete in annelids that are semi-sessile or that do not move by peristalsis or by movements of parapodia – for example some move by whipping movements of the body, some small marine species move by means of cilia (fine muscle-powered hairs) and some burrowers turn their pharynges (throats) inside out to penetrate the sea-floor and drag themselves into it.[3]
The fluid in the coeloms contains coelomocyte cells that defend the animals against parasites and infections. In some species coelomocytes may also contain a respiratory pigment – red hemoglobin in some species, green chlorocruorin in others[13] – and provide oxygen transport within their segments. Respiratory pigment is also dissolved in the blood plasma. Species with well-developed septa generally also have blood vessels running all long their bodies above and below the gut, the upper one carrying blood forwards while the lower one carries it backwards. Networks of capillaries (fine blood vessels) in the body wall and around the gut transfer blood between the main blood vessels and to parts of the segment that need oxygen and nutrients. Both of the major vessels, especially the upper one, can pump blood by contracting. In some annelids the forward end of the upper blood vessel is enlarged with muscles to form a heart, while in the forward ends of many earthworms some of the vessels that connect the upper and lower main vessels function as hearts. Species with poorly-developed or no septa generally have no blood vessels and rely on the circulation within the coelom for delivering nutrients and oxygen.[3]
However, leeches and their closest relatives have a body structure that is very uniform within the group but significantly different from that of other annelids, including other members of the Clitellata.[10] In leeches there are no septa, the connective tissue layer of the body wall is so thick that it occupies much of the body, and the two coeloms are widely separated and run the length of the body. They function as the main blood vessels, although they are side-by-side rather than upper and lower. However, they are lined with mesothelium, like the coeloms and unlike the blood vessels of other annelids. Leeches generally use suckers at their front and rear ends to move like inchworms. The anus is on the upper surface of the pygidium.[10]
[edit] Respiration
In some annelids, including earthworms, all respiration is via the skin. However, many polychaetes and some clitellates (the group to which earthworms belong) have gills associated with most segments, often as extensions of the parapodia in polychaetes. The gills of tube-dwellers and burrowers usually cluster around whichever end has the stronger water flow.[13]
[edit] Feeding and excretion
Feeding structures in the mouth region vary widely, and have little correlation with the animals' diets. Many polychaetes have a muscular pharynx that can be everted (turned inside out to extend it). In these animals the foremost few segments often lack septa so that, when the muscles in these segments contract, the sharp increase in fluid pressure from all these segments everts the pharynx very quickly. Two families, the Eunicidae and Phyllodocidae, have evolved jaws, which can be used for seizing prey, biting off pieces of vegetation, or grasping dead and decaying matter. On the other hand some predatory polychaetes have neither jaws nor eversible pharynges. Selective deposit feeders generally live in tubes on the sea-floor and use palps to find food particles in the sediment and then wipe them into their mouths. Filter feeders use "crowns" of palps covered in cilia that wash food particles towards their mouths. Non-selective deposit feeders ingest soil or marine sediments via mouths that are generally unspecialized. Some clitellates have sticky pads in the roofs of their mouths, and some of these can evert the pads to capture prey. Leeches often have an eversible proboscis, or a muscular pharynx with two or three teeth.[13]
The gut is generally an almost straight tube supported by the mesenteries (vertical partitions within segments), and ends with the anus on the underside of the pygidium.[3] However, in members of the tube-dwelling family Siboglinidae the gut is blocked by a swollen lining that houses symbiotic bacteria, which can make up 15% of the worms' total weight. The bacteria convert inorganic matter – such as hydrogen sulfide and carbon dioxide from hydrothermal vents, or methane from seeps – to organic matter that feeds themselves and their hosts, while the worms extend their palps into the gas flows to absorb the gases needed by the bacteria.[13]
Annelids with blood vessels use metanephridia to remove soluble waste products, while those without use protonephridia.[3] Both of these systems use a two-stage filtration process, in which fluid and waste products are first extracted and these are filtered again to re-absorb any re-usable materials while dumping toxic and spent materials as urine. The difference is that protonephridia combine both filtration stages in the same organ, while metanephridia perform only the second filtration and rely on other mechanisms for the first - in annelids special filter cells in the walls of the blood vessels let fluids and other small molecules pass into the coelomic fluid, where it circulates to the metanephridia.[27] In annelids the points at which fluid enters the protonephridia or metanephridia are on the forward side of a septum while the second-stage filter and the nephridiopore (exit opening in the body wall) are in the following segment. As a result the hindmost segment (before the growth zone and pygidium) has no structure that extracts its wastes, as there is no following segment to filter and discharge them, while the first segment contains an extraction structure that passes wastes to the second, but does not contain the structures that re-filter and discharge urine.[3]
[edit] Reproduction and life cycle
[edit] Asexual reproduction
This sabellid tubeworm is budding
Polychaetes can reproduce asexually, by dividing into two or more pieces or by budding off a new individual while the parent remains a complete organism.[3][28] Some oligochaetes, such as Aulophorus furcatus, seem to reproduce entirely asexually, while others reproduce asexually in summer and sexually in autumn. Asexual reproduction in oligochaetes is always by dividing into two or more pieces, rather than by budding.[7][29] However, leeches have never been seen reproducing asexually.[7][30]
Most polychaetes and oligochaetes also use similar mechanisms to regenerate after suffering damage. Two polychaete genera, Chaetopterus and Dodecaceria, can regenerate from a single segment, and others can regenerate even if their heads are removed.[7][28] Annelids are the most complex animals that can regenerate after such severe damage.[31] On the other hand leeches cannot regenerate.[30]
[edit] Sexual reproduction
Apical tuft (cilia)
Prototroch (cilia)
Stomach
Mouth
Metatroch (cilia)
Mesoderm
Anus
/// = cilia
Trochophore larva[32]
It is thought that annelids were originally animals with two separate sexes, which released ova and sperm into the water via their nephridia.[3] The fertilized eggs develop into trochophore larvae, which live as plankton.[33] Later they sink to the sea-floor and metamorphose into miniature adults: the part of the trochophore between the apical tuft and the prototroch becomes the prostomium (head); a small area round the trochophore's anus becomes the pygidium (tail-piece); a narrow band immediately in front of that becomes the growth zone that produces new segments; and the rest of the trochophore becomes the peristomium (the segment that contains the mouth).[3]
However, the lifecycles of most living polychaetes, which are almost all marine animals, are unknown, and only about 25% of the 300+ species whose lifecycles are known follow this pattern. About 14% use a similar external fertilization but produce yolk-rich eggs, which reduce the time the larva needs to spend among the plankton, or eggs from which miniature adults emerge rather than larvae. The rest care for the fertilized eggs until they hatch – some by producing jelly-covered masses of eggs which they tend, some by attaching the eggs to their bodies and a few species by keeping the eggs within their bodies until they hatch. These species use a variety of methods for sperm transfer; for example, in some the females collect sperm released into the water, while in others the males have penes that inject sperm into the female.[33] There is no guarantee that this is a representative sample of polychaetes' reproductive patterns, and it simply reflects scientists' current knowledge.[33]
Some polychaetes breed only once in their lives, while others breed almost continuously or through several breeding seasons. While most polychaetes remain of one sex all their lives, a significant percentage of species are full hermaphrodites or change sex during their lives. Most polychaetes whose reproduction has been studied lack permanent gonads, and it is uncertain how they produce ova and sperm. In a few species the rear of the body splits off and becomes a separate individual that lives just long enough to swim to a suitable environment, usually near the surface, and spawn.[33]
Most mature clitellates (the group that includes earthworms and leeches) are full hermaphrodites, although in a few leech species younger adults function as males and become female at maturity. All have well-developed gonads, and all copulate. Earthworms store their partners' sperm in spermathecae ("sperm stores") and then the clitellum produces a cocoon that collects ova from the ovaries and then sperm from the spermathecae. Fertilization and development of earthworm eggs takes place in the cocoon. Leeches' eggs are fertilized in the ovaries, and then transferred to the cocoon. In all clitellates the cocoon also either produces yolk when the eggs are fertilized or nutrients while they are developing. All clitellates hatch as miniature adults rather than larvae.[33]
[edit] Ecological significance
Charles Darwin's book The Formation of Vegetable Mould through the Action of Worms (1881) presented the first scientific analysis of earthworms' contributions to soil fertility.[34] Some burrow while others live entirely on the surface, generally in moist leaf litter. The burrowers loosen the soil so that oxygen and water can penetrate it, and both surface and burrowing worms help to produce soil by mixing organic and mineral matter, by accelerating the decomposition of organic matter and thus making it more quickly available to other organisms, and by concentrating minerals and converting them to forms that plants can use more easily.[35][36] Earthworms are also important prey for birds ranging in size from robins to storks, and for mammals ranging from shrews to badgers, and in some cases conserving earthworms may be essential for conserving endangered birds.[37]
Marine annelids may account for over one-third of bottom-dwelling animal species round coral reefs and in tidal zones.[34] Burrowing species increase the penetration of water and oxygen and water into the sea-floor sediment, which encourages the growth of populations of bacteria and small animals alongside their burrows.[38]
Although blood-sucking leeches do little direct harm to their victims, some transmit flagellates that can be very dangerous to their hosts. Some small tube-dwelling oligochaetes transmit myxosporean parasites that cause whirling disease in fish.[34]
[edit] Interaction with humans
Earthworms make a significant contribution to soil fertility.[34] The rear end of the Palolo worm, a marine polychaete that tunnels through coral, detaches in order to spawn at the surface, and the people of Samoa regard these spawning modules as a delicacy.[34] Anglers sometimes find that worms are more effective bait than artificial flies, and worms can be kept for several days in a tin lined with damp moss.[39] Ragworms are commercially important as bait and as food sources for aquaculture, and there have been proposals to farm them in order to reduce over-fishing of their natural populations.[38] Some marine polychaetes' predation on molluscs causes serious losses to fishery and aquaculture operations.[34]
Scientists study aquatic annelids to monitor the oxygen content, salinity and pollution levels in fresh and marine water.[34]
Accounts of the use of leeches for the medically dubious practise of blood-letting have come from China around 30 AD, India around 200 AD, ancient Rome around 50 AD and later throughout Europe. In the 19th century medical demand for leeches was so high that some areas' stocks were exhausted and other regions imposed restrictions or bans on exports, and Hirudo medicinalis is treated as an endangered species by both IUCN and CITES. More recently leeches have been used to assist in microsurgery, and their saliva has provided anti-inflammatory compounds and several important anticoagulants, one of which also prevents tumors from spreading.[34]
Ragworms' jaws are strong but much lighter than the hard parts of many other organisms, which are biomineralized with calcium salts. These advantages have attracted the attention of engineers. Investigations showed that ragworm jaws are made of unusual proteins that bind strongly to zinc.[40]
[edit] Evolutionary history
[edit] Fossil record
Since annelids are soft-bodied, their fossils are rare.[41] Polychaetes' fossil record consists mainly of the jaws that some species had and the mineralized tubes that some secreted.[42] Some Ediacaran fossils such as Dickinsonia in some ways resemble polychaetes, but the similarities are too vague for these fossils to be classified with confidence.[43] The small shelly fossil Cloudina, from 549 to 542 million years ago, has been classified by some authors as an annelid, but by others as a cnidarian (i.e. in the phylum to which jellyfish and sea anemones belong).[44] Until 2008 the earliest fossils widely accepted as annelids were the polychaetes Canadia and Burgessochaeta, both from Canada's Burgess Shale, formed about 505 million years ago in the early Cambrian.[45] Myoscolex, found in Australia and a little older than the Burgess Shale, was possibly an annelid. However, it lacks some typical annelid features and has features which are not usually found in annelids and some of which are associated with other phyla.[45] Then Simon Conway Morris and John Peel reported Phragmochaeta from Sirius Passet, about 518 million years old, and concluded that it was the oldest annelid known to date.[43] There has been vigorous debate about whether the Burgess Shale fossil Wiwaxia was a mollusc or an annelid.[45] Polychaetes diversified in the early Ordovician, about 488 to 474 million years ago. By the end of the Carboniferous, about 299 million years ago, fossils of most of the modern mobile polychaete groups had appeared.[45] Many fossil tubes look like those made by modern sessile polychaetes, but the first tubes clearly produced by polychaetes date from the Jurassic, less than 199 million years ago.[45]
The earliest good evidence for oligochaetes occurs in the Tertiary period, which began 65 million years ago, and it has been suggested that these animals evolved around the same time as flowering plants in the early Cretaceous, from 130 to 90 million years ago.[46] A trace fossil consisting of a convoluted burrow partly filled with small fecal pellets may be evidence that earthworms were present in the early Triassic period from 251 to 245 million years ago.[46][47] Body fossils going back to the mid Ordovician, from 472 to 461 million years ago, have been tentatively classified as oligochaetes, but these identifications are uncertain and some have been disputed.[46][48]
[edit] Family tree
Annelida
some "Scolecida" and "Aciculata"
some "Canalipalpata"
Sipuncula, previously a separate phylum
Clitellata
some "Oligochaeta"
Hirudines (leeches)
some "Oligochaeta"
some "Oligochaeta"
Aeolosomatidae[49]
some "Scolecida" and "Canalipalpata"
some "Scolecida"
Echiura, previously a separate phylum
some "Scolecida"
some "Canalipalpata"
Siblonginidae, previously phylum Pogonophora
some "Canalipalpata"
some "Scolecida", "Canalipalpata" and "Aciculata"
Annelid groups and phyla incorporated into Annelida (2007; simplified).[5]
Highlights major changes to traditional classifications.
Traditionally the annelids have been divided into two major groups, the polychaetes and clitellates. In turn the clitellates were divided into oligochaetes, which include earthworms, and hirudinomorphs, whose best-known members are leeches.[3] For many years there was no clear arrangement of the approximately 80 polychaete families into higher-level groups.[5] In 1997 Greg Rouse and Kristian Fauchald attempted a "first heuristic step in terms of bringing polychaete systematics to an acceptable level of rigour", based on anatomical structures, and divided polychaetes into:[50]
* Scolecida, less than 1,000 burrowing species that look rather like earthworms.[51]
* Palpata, the great majority of polychaetes, divided into:
o Canalipalpata, which are distinguished by having long grooved palps that they use for feeding, and most of which live in tubes.[51]
o Aciculata, the most active polychaetes, which have parapodia reinforced by internal spines (aciculae).[51]
Also in 1997 Damhnait McHugh, using molecular phylogenetics to compare similarities and differences in one gene, presented a very different view, in which: the clitellates were an off-shoot of one branch of the polychaete family tree; the pogonophorans and echiurans, which for a few decades had been regarded as a separate phyla, were placed on other branches of the polychaete tree.[52] Subsequent molecular phylogenetics analyses on a similar scale presented similar conclusions.[53]
In 2007 Torsten Struck and colleagues compared 3 genes in 81 taxa, of which 9 were outgroups,[5] in other words not considered closely related to annelids but included to give an indication of where the organisms under study are placed on the larger tree of life.[54] For a cross-check the study used an analysis of 11 genes (including the original 3) in 10 taxa. This analysis agreed that clitellates, pogonophorans and echiurans were on various branches of the polychaete family tree. It also concluded that the classification of polychaetes into Scolecida, Canalipalpata and Aciculata was useless, as the members of these alleged groups were scattered all over the family tree derived from comparing the 81 taxa. In addition, it also placed sipunculans, generally regarded at the time as a separate phylum, on another branch of the polychaete tree, and concluded that leeches were a sub-group of oligochaetes rather than their sister-group among the clitellates.[5] Rouse accepted the analyses based on molecular phylogenetics,[7] and their main conclusions are now the scientific consensus, although the details of the annelid family tree remain uncertain.[6]
In addition to re-writing the classification of annelids and 3 previously independent phyla, the molecular phylogenetics analyses undermine the emphasis that decades of previous writings placed on the importance of segmentation in the classification of invertebrates. Polychaetes, which these analyses found to be the parent group, have completely segmented bodies, while polychaetes' echiurans and sipunculan offshoots are not segmented and pogonophores are segmented only in the rear parts of their bodies. It now seems that segmentation can appear and disappear much more easily in the course of evolution than was previously thought.[5][52] The 2007 study also noted that the ladder-like nervous system, which is associated with segmentation, is less universal than previously thought in both annelids and arthropods.[5]
Bilateria
Acoelomorpha (Acoela and Nemertodermatida)
Deuterostomia (Echinoderms, chordates, etc.)
Protostomia
Ecdysozoa
(Arthropods, nematodes, priapulids, etc.)
Lophotrochozoa
Bryozoa
Annelida
Sipuncula
Mollusca
Phoronida and Brachiopoda
Nemertea
Dicyemida
Myzostomida
Platyzoa
Other Platyzoa
Gastrotricha
Platyhelminthes
Relationships of Annelids to other Bilateria:[53]
(Analysis produced in 2004, before Sipuncula were merged into Annelida in 2007[5])
Annelids are members of the protostomes, one of the two major superphyla of bilaterian animals - the other is the deuterostomes, which includes vertebrates.[53] Within the protostomes, annelids used to be grouped with arthropods under the super-group Articulata ("jointed animals"), as segmentation is obvious in most members of both phyla. However, the genes that drive segmentation in arthropods do not appear to do the same in annelids. Arthropods and annelids both have close relatives that are unsegmented. It is at least as easy to assume that they evolved segmented bodies independently as it is to assume that the ancestral protostome or bilaterian was segmented and that segmentation disappeared in many descendant phyla.[53] The current view is that annelids are grouped with molluscs, brachiopods and several other phyla that have lophophores (fan-like feeding structures) and/or trochophore larvae as members of Lophotrochozoa.[55] Bryzoa may be the most basal phylum (the one that first became distinctive) within the Lophotrochozoa, and the relationships between the other members are not yet known.[53] Arthropods are now regarded as members of the Ecdysozoa ("animals that molt"), along with some phyla that are unsegmented.[53][56]
The "Lophotrochozoa" hypothesis is also supported by the fact that many phyla within this group, including annelids, molluscs, nemerteans and flatworms, follow a similar pattern in the fertilized egg's development. When their cells divide after the 4-cell stage, descendants of these 4 cells form a spiral pattern. In these phyla the "fates" of the embryo's cells, in other words the roles their descendants will play in the adult animal, are the same and can be predicted from a very early stage.[57] Hence this development pattern is often described as "spiral determinate cleavage".[58]
[edit] References
1. ^ Dictionary.com Unabridged: Annelida. Based on the Random House Dictionary, Random House, Inc., 2009.
2. ^ a b c d e Rouse, G.W. (2002). "Annelida (Segmented Worms)". Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.. doi:10.1038/npg.els.0001599.
3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 414–420. ISBN 0030259827.
4. ^ Lavelle, P. (July 1996). "Diversity of Soil Fauna and Ecosystem Function". Siobgy Intemational 33. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_45-46/010008126.pdf. Retrieved 2009-04-20.
5. ^ a b c d e f g h i Struck, T.H.; Schult, N., Kusen, T., Hickman, E., Bleidorn. C., McHugh, D., and Halanych, K.M. (2007). "Annelid phylogeny and the status of Sipuncula and Echiura". BMC Evolutionary Biology 7 (57): 57. doi:10.1186/1471-2148-7-57.
6. ^ a b Hutchings, P. (2007). "Book Review: Reproductive Biology and Phylogeny of Annelida". Integrative and Comparative Biology 47: 788. doi:10.1093/icb/icm008.
7. ^ a b c d e f g h i j k l Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 176–179. ISBN 0195513681.
8. ^ a b c d e Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 179–183. ISBN 0195513681.
9. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. p. 459. ISBN 0030259827.
10. ^ a b c d Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 471–482. ISBN 0030259827.
11. ^ a b c Halanych, K.M.; Dahlgren, T.G., and McHugh, D. (2002). "Unsegmented Annelids? Possible Origins of Four Lophotrochozoan Worm Taxa". Integrative and Comparative Biology 42 (3): 678–684. doi:10.1093/icb/42.3.678.
12. ^ McHugh, D. (July 1997). "Molecular evidence that echiurans and pogonophorans are derived annelids". Proceedings of the National Academy of Sciences of the United States of America 94 (15): 8006–8009. PMID 9223304. PMC 21546. http://www.pnas.org/content/94/15/8006.full. Retrieved 2009-04-02.
13. ^ a b c d e f g h i j k l m n o Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 183–196. ISBN 0195513681.
14. ^ Cutler, B. (August, 1980). "Arthropod cuticle features and arthropod monophyly". Cellular and Molecular Life Sciences 36 (8): 953. doi:10.1007/BF01953812. http://www.springerlink.com/content/m880k13r6232q1m8/. Retrieved 2008-09-25.
15. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Arthropoda". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 523–524. ISBN 0030259827.
16. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Echiura and Sipuncula". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 490–495. ISBN 0030259827.
17. ^ Anderson, D.T., (1998). "The Annelida and their close relatives". in Anderson, D.T.,. Invertebrate Zoology. Oxford University Press. pp. 183–196. ISBN 0195513681.
18. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Nemertea". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 271–282. ISBN 0030259827.
19. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Arthropoda". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 518–521. ISBN 0030259827.
20. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Onychophora and Tardigrada". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 505–510. ISBN 0030259827.
21. ^ Paxton, H. (June 2005). "Molting polychaete jaws—ecdysozoans are not the only molting animals". Evolution & Development 7 (4): 337–340. doi:10.1111/j.1525-142X.2005.05039.x.
22. ^ a b c Nielsen, C. (September 2003,). "Proposing a solution to the Articulata–Ecdysozoa controversy". Zoologica Scripta 32 (5): 475–482. doi:10.1046/j.1463-6409.2003.00122.x. http://www.museunacional.ufrj.br/mndi/Aracnologia/pdfliteratura/Nielsen%202003%20articulata%20vs%20ecdiso.pdf. Retrieved 2009-03-11.
23. ^ Jenner, R.A. (2006). "Challenging received wisdoms: Some contributions of the new microscopy to the new animal phylogeny". Integrative and Comparative Biology 46 (2): 93–103. doi:10.1093/icb/icj014.
24. ^ a b c d Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 425–429. ISBN 0030259827.
25. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Metazoa". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 103–104. ISBN 0030259827.
26. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 423–425. ISBN 0030259827.
27. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Introduction to Bilateria". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 196–224. ISBN 0030259827.
28. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 434–441. ISBN 0030259827.
29. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 466–469. ISBN 0030259827.
30. ^ a b Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Annelida". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 477–478. ISBN 0030259827.
31. ^ Hickman, Cleveland; Roberts L. Keen S. Larson A. Eisenhour D (2007). Animal Diversity (4 th ed.). New York: Mc Graw Hill. p. 204. ISBN 978-0-07-252844-2.
32. ^ Ruppert, E.E., Fox, R.S., and Barnes, R.D. (2004). "Mollusca". Invertebrate Zoology (7 ed.). Brooks / Cole. pp. 290-291. ISBN 0030259827.
33. ^ a b c d e Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. pp. 196–202. ISBN 0195513681.
34. ^ a b c d e f g h Siddall, M.E.; Borda, E., and Rouse, G.W. (2004). "Towards a tree of life for Annelida". in Cracraft, J., and Donoghue, M.J.. Assembling the tree of life. Oxford University Press US. pp. 237–248. ISBN 0195172345. http://books.google.co.uk/books?id=6lXTP0YU6_kC&pg=PA237&dq=annelid+food+eat&lr=#PPA237,M1. Retrieved 2009-04-02.
35. ^ New, T.R. (2005). Invertebrate conservation and agricultural ecosystems. Cambridge University Press. pp. 44–46. ISBN 0521532019. http://books.google.co.uk/books?id=bwqGf_JK3HcC&pg=PA44&dq=annelid+ecosystem#PPA45,M1. Retrieved 2009-04-02.
36. ^ Nancarrow, L.; Taylor, J.H. (1998). The worm book. Ten Speed Press. pp. 2–6. ISBN 0898159946. http://books.google.co.uk/books?id=U9uQVXCzmGcC&pg=PA139&dq=annelid+ecosystem#PPA6,M1. Retrieved 2009-04-02.
37. ^ Edwards, C.A.; Bohlen, P.J. (1996). "Earthworm ecology: communities". Biology and ecology of arthworms. Springer. pp. 124–126. ISBN 0412561603. http://books.google.co.uk/books?hl=en&lr=&id=ad4rDwD_GhsC&oi=fnd&pg=PT7&dq=earliest+oligochaete+clitellate+fossil+&ots=38d6tIYuu-&sig=IYCachJZIxdo0tZqe5YN5yCbjJ4#PPA40,M1. Retrieved 2009-04-12.
38. ^ a b Scaps, P. (February 2002). "A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor". Hydrobiologia 470 (1-3): 203–218. doi:10.1023/A:1015681605656.
39. ^ Sell, F.E. (re-published 2008). "The humble worm – with a difference". Practical Fresh Water Fishing. Read Books. pp. 14–15. ISBN 1443761575. http://books.google.co.uk/books?id=t_8tfWmRmmQC&pg=PA14&dq=worm+fishing+angler+bait&lr=#PPA3,M1. Retrieved 2009-04-02.
40. ^ "Rags to riches". The Economist. July 2008. http://www.economist.com/science/displaystory.cfm?story_id=11785227&CFID=14891129&CFTOKEN=52298400. Retrieved 2009-04-20.
41. ^ Rouse, G. (1998). "The Annelida and their close relatives". in Anderson, D.T.. Invertebrate Zoology. Oxford University Press. p. 202. ISBN 0195513681.
42. ^ Briggs, D.E.G.; Kear, A.J. (1993). "Decay and preservation of polychaetes; taphonomic thresholds in soft-bodied organisms". Paleobiology 19 (1): 107–135. http://paleobiol.geoscienceworld.org/cgi/content/abstract/19/1/107. Retrieved 2009-04-12.
43. ^ a b Conway Morris, S.; Peel, J.S. (2008). "The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland". Acta Palaeontologica Polonica 53 (1): 137–148. http://www.app.pan.pl/archive/published/app53/app53-137.pdf. Retrieved 2009-04-12.
44. ^ Miller, A.J. (unpublished; produced in 2004). "A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications". http://ajm.pioneeringprojects.org/files/CloudinaPaper_Final.pdf. Retrieved 2009-04-12.
45. ^ a b c d e Dzik, J. (2004). "Anatomy and relationships of the Early Cambrian worm Myoscolex". Zoologica Scripta 33 (1): 57–69. doi:10.1111/j.1463-6409.2004.00136.x.
46. ^ a b c Humphreys, G.S. (2003). "Evolution of terrestrial burrowing invertebrates". in Roach, I.C.. Advances in Regolith. CRC LEME. pp. 211–215. ISBN 0731552210. http://crcleme.org.au/Pubs/Advancesinregolith/Humphreys.pdf. Retrieved 2009-04-13.
47. ^ Retallack, G.J. (1997). "Palaeosols in the upper Narrabeen Group of New South Wales as evidence of Early Triassic palaeoenvironments without exact modern analogues". Australian Journal of Earth Sciences 44: 185–201. doi:10.1080/08120099708728303. http://www.uoregon.edu/~gregr/Papers/new%20south%20wales.pdf. Retrieved 2009-04-13.
48. ^ Conway Morris, S.; Pickerill, R.K. and Harland, T.L. (1982). "A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms". Canadian Journal of Earth Sciences 19: 2150–2157. doi:10.1139/e82-189 (inactive 2010-01-05). http://rparticle.web-p.cisti.nrc.ca/rparticle/AbstractTemplateServlet?calyLang=eng&journal=cjes&volume=19&year=0&issue=11&msno=e82-189. Retrieved 2009-04-13.
49. ^ A group of worms classified by some as polychaetes and by others as clitellates, see Rouse & Fauchald (1997) "Cladistics and polychaetes"
50. ^ Rouse, G.W.; Fauchald, K. (1997). "Cladistics and polychaetes". Zoologica Scripta 26 (2): 139–204. doi:10.1111/j.1463-6409.1997.tb00412.x.
51. ^ a b c Rouse, G.W.; Pleijel, F. and McHugh, D. (August 2002). "Annelida. Annelida. Segmented worms: bristleworms, ragworms, earthworms, leeches and their allies". The Tree of Life Web Project. Tree of Life Project. http://tolweb.org/Annelida. Retrieved 2009-04-13.
52. ^ a b McHugh, D. (1997). "Molecular evidence that echiurans and pogonophorans are derived annelids". Proceedings of the National Academy of Sciences of the United States of America 94 (15): 8006–8009. doi:10.1073/pnas.94.15.8006. PMID 9223304. PMC 21546. http://www.pnas.org/content/94/15/8006.long. Retrieved 2009-04-13.
53. ^ a b c d e f Halanych, K.M.. (2004). "The new view of animal phylogeny". Annual Review of Ecology, Evolution, and Systematics 35: 229–256. doi:10.1146/annurev.ecolsys.35.112202.130124. http://www-fourier.ujf-grenoble.fr/~dpiau/cdem/130124b.pdf. Retrieved 21009-04-17.
54. ^ "Reading trees: A quick review". University of California Museum of Paleontology. http://evolution.berkeley.edu/evolibrary/article/phylogenetics_02. Retrieved 2009-04-13.
55. ^ Dunn et al., CW; Hejnol, A; Matus, DQ; Pang, K; Browne, WE; Smith, SA; Seaver, E; Rouse, GW et al. (2008). "Broad phylogenomic sampling improves resolution of the animal tree of life". Nature 452 (7188): 745–749. doi:10.1038/nature06614. PMID 18322464. http://www.nature.com/nature/journal/v452/n7188/abs/nature06614.html.
56. ^ Aguinaldo, A. M. A.; J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff, & J. A. Lake (1997). "Evidence for a clade of nematodes, arthropods and other moulting animals". Nature 387 (6632): 489–493. doi:10.1038/387489a0. PMID 9168109.
57. ^ Shankland, M.; Seaver, E.C. (April 2000). "Evolution of the bilaterian body plan: What have we learned from annelids?". Proceedings of the National Academy of Sciences of the United States of America 97 (9): 4434–4437. doi:10.1073/pnas.97.9.4434. PMID 10781038. PMC 34316. http://www.pnas.org/content/97/9/4434.full. Retrieved 2009-04-20.
58. ^ Pearson, R.D. (2003). "The Determined Embryo". in Hall, B.K., Pearson, R.D., and Müller, G.B.. Environment, Development, and Evolution. MIT Press. pp. 67–69. ISBN 0-262-08319-1. http://books.google.co.uk/books?hl=en&lr=&id=65Bdfy-SOyMC&oi=fnd&pg=PA67&dq=spiral+determinate+cleavage&ots=dOC4vZpDmI&sig=g5xIGtU4gEBUxQs0zKYXBp01eqM. Retrieved 2009-07-03.
[edit] Further reading
* Dales, R. P. 1967. Annelids, 2nd edition. London: Hutchinson University Library.
* "Annelid Fossils" (Web page). The Virtual Fossil Museum. 2006. http://www.fossilmuseum.net/fossils/Annelid-Fossils.htm. Retrieved May 20, 2006. – Descriptions and images of annelid fossils from Mazon Creek and the Utah House Range.
Search Wikimedia Commons Wikimedia Commons has media related to: Annelida
Search Wikispecies Wikispecies has information related to: Annelida
Search Wikibooks The Wikibook Dichotomous Key has a page on the topic of
Annelida
[edit] External links
* Polychaete Larva - Guide to the Marine Zooplankton of south eastern Australia, Tasmanian Aquaculture & Fisheries Institute
* Malaysia Medicinal Leeches
[hide]
v • d • e
Extant phyla of kingdom Animalia by subkingdom
Parazoa
Porifera (Calcarea, Demospongiae, Hexactinellida) · Placozoa (Trichoplax)
Mesozoa
Orthonectida · Rhombozoa
Eumetazoa
Radiata
Ctenophora · Cnidaria (Anthozoa, Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Myxozoa)
Bilateria
Protostomia
Ecdysozoa
Cycloneuralia: Scalidophora (Kinorhyncha, Loricifera, Priapulida) · Nematoida (Nematoda, Nematomorpha)
Panarthropoda: Onychophora · Tardigrada · Arthropoda
Spiralia
Platyzoa
Platyhelminthes · Gastrotricha
Gnathifera: Rotifera · Acanthocephala · Gnathostomulida · Micrognathozoa · Cycliophora
Lophotrochozoa
Trochozoa (Sipuncula, Nemertea, Mollusca, Annelida, Echiura)
Lophophorata (Bryozoa, Entoprocta, Phoronida, Brachiopoda)
Deuterostomia
Ambulacraria
Hemichordata · Echinodermata · Xenoturbellida
Chordata
Craniata (Vertebrata, Hyperotreti) · Cephalochordata · Tunicata
Basal/disputed
Acoelomorpha (Acoela, Nemertodermatida) · Chaetognatha
Retrieved from "http://en.wikipedia.org/wiki/Annelid"
Categories: Annelids
Hidden categories: Pages with DOIs broken since 2010 | Wikipedia indefinitely move-protected pages | Articles with 'species' microformats
Views
* Article
* Discussion
* Edit this page
* History
Personal tools
* Try Beta
* Log in / create account
Navigation
* Main page
* Contents
* Featured content
* Current events
* Random article
Search
Interaction
* About Wikipedia
* Community portal
* Recent changes
* Contact Wikipedia
* Donate to Wikipedia
* Help
Toolbox
* What links here
* Related changes
* Upload file
* Special pages
* Printable version
* Permanent link
* Cite this page
Languages
* العربية
* Azərbaycan
* বাংলা
* Bân-lâm-gú
* Български
* Català
* Česky
* Cymraeg
* Dansk
* Deutsch
* Eesti
* Ελληνικά
* Español
* Esperanto
* Euskara
* Føroyskt
* Français
* Galego
* 한국어
* Hrvatski
* Bahasa Indonesia
* Interlingua
* Italiano
* ქართული
* Latina
* Latviešu
* Lietuvių
* Magyar
* Македонски
* Nederlands
* 日本語
* Norsk (bokmål)
* Norsk (nynorsk)
* Occitan
* Polski
* Português
* Română
* Runa Simi
* Русский
* Simple English
* Slovenčina
* Slovenščina
* Српски / Srpski
* Srpskohrvatski / Српскохрватски
* Suomi
* Svenska
* తెలుగు
* ไทย
* Türkçe
* Українська
* Tiếng Việt
* 中文
Powered by MediaWiki
Wikimedia Foundation
* This page was last modified on 31 March 2010 at 11:16.
* Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
* Contact us
* Privacy policy
* About Wikipedia
* Disclaimers
Langganan:
Postingan (Atom)